--- license: other tags: - merge - mergekit - lazymergekit base_model: - meta-llama/Meta-Llama-3-70B-Instruct - meta-llama/Meta-Llama-3-70B-Instruct - meta-llama/Meta-Llama-3-70B-Instruct - meta-llama/Meta-Llama-3-70B-Instruct - meta-llama/Meta-Llama-3-70B-Instruct - meta-llama/Meta-Llama-3-70B-Instruct - meta-llama/Meta-Llama-3-70B-Instruct --- ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/C-Xw_m97bhXaTA1TEpHB7.jpeg) # Meta-Llama-3-120B-Instruct Meta-Llama-3-120B-Instruct is a [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) self-merge made with [MergeKit](https://github.com/arcee-ai/mergekit/tree/main). It was inspired by large merges like: - [alpindale/goliath-120b](https://huggingface.co/alpindale/goliath-120b) - [nsfwthrowitaway69/Venus-120b-v1.0](https://huggingface.co/nsfwthrowitaway69/Venus-120b-v1.0) - [cognitivecomputations/MegaDolphin-120b](https://huggingface.co/cognitivecomputations/MegaDolphin-120b) - [wolfram/miquliz-120b-v2.0](https://huggingface.co/wolfram/miquliz-120b-v2.0). Special thanks to [Eric Hartford](https://huggingface.co/ehartford) for both inspiring and evaluating this model and to [Charles Goddard](https://huggingface.co/chargoddard) for creating MergeKit. ## 🔍 Applications I recommend using this model for creative writing. It uses the Llama 3 chat template with a default context window of 8K (can be extended with rope theta). Check the examples in the evaluation section to get an idea of its performance. The model is generally quite unhinged but has a good writing style. It sometimes outputs typos and is a big fan of uppercase. ## ⚡ Quantized models Thanks to [Eric Hartford](https://huggingface.co/ehartford), [elinas](https://huggingface.co/elinas), and the [mlx-community](https://huggingface.co/mlx-community) for providing these models. * **GGUF**: https://huggingface.co/cognitivecomputations/Meta-Llama-3-120B-Instruct-gguf * **EXL2**: https://huggingface.co/elinas/Meta-Llama-3-120B-Instruct-4.0bpw-exl2 * **mlx**: https://huggingface.co/mlx-community/Meta-Llama-3-120B-Instruct-4bit ## 🏆 Evaluation This model is great for creative writing but struggles in other tasks. I'd say use it with caution and don't expect it to outperform GPT-4 outside of some specific use cases. * **X thread by Eric Hartford (creative writing)**: https://twitter.com/erhartford/status/1787050962114207886 * **X thread by Daniel Kaiser (creative writing)**: https://twitter.com/spectate_or/status/1787257261309518101 * **X thread by Simon (reasoning)**: https://twitter.com/NewDigitalEdu/status/1787403266894020893 * **r/LocalLLaMa**: https://www.reddit.com/r/LocalLLaMA/comments/1cl525q/goliath_lovers_where_is_the_feedback_about/ ### Creative Writing Thanks to [Sam Paech](https://huggingface.co/sam-paech) for evaluating this model and sending me his outputs! ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/-LJ7ivCRIPR1ur-LJHk3m.png) ## 🧩 Configuration ```yaml slices: - sources: - layer_range: [0, 20] model: meta-llama/Meta-Llama-3-70B-Instruct - sources: - layer_range: [10, 30] model: meta-llama/Meta-Llama-3-70B-Instruct - sources: - layer_range: [20, 40] model: meta-llama/Meta-Llama-3-70B-Instruct - sources: - layer_range: [30, 50] model: meta-llama/Meta-Llama-3-70B-Instruct - sources: - layer_range: [40, 60] model: meta-llama/Meta-Llama-3-70B-Instruct - sources: - layer_range: [50, 70] model: meta-llama/Meta-Llama-3-70B-Instruct - sources: - layer_range: [60, 80] model: meta-llama/Meta-Llama-3-70B-Instruct merge_method: passthrough dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mlabonne/Llama-3-120B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```