--- license: llama3.1 datasets: - OpenCoder-LLM/opc-sft-stage1 - OpenCoder-LLM/opc-sft-stage2 - microsoft/orca-agentinstruct-1M-v1 - microsoft/orca-math-word-problems-200k - NousResearch/hermes-function-calling-v1 - AI-MO/NuminaMath-CoT - AI-MO/NuminaMath-TIR - allenai/tulu-3-sft-mixture - cognitivecomputations/dolphin-coder - HuggingFaceTB/smoltalk - cognitivecomputations/samantha-data - m-a-p/CodeFeedback-Filtered-Instruction - m-a-p/Code-Feedback language: - en base_model: cognitivecomputations/Dolphin3.0-Llama3.1-8B tags: - mlx --- # mlx-community/Dolphin3.0-Llama3.1-8B-6bit The Model [mlx-community/Dolphin3.0-Llama3.1-8B-6bit](https://huggingface.co/mlx-community/Dolphin3.0-Llama3.1-8B-6bit) was converted to MLX format from [cognitivecomputations/Dolphin3.0-Llama3.1-8B](https://huggingface.co/cognitivecomputations/Dolphin3.0-Llama3.1-8B) using mlx-lm version **0.20.5**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Dolphin3.0-Llama3.1-8B-6bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```