File size: 1,260 Bytes
c10205a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb29b56
 
 
c10205a
 
f14eb51
 
 
 
c10205a
a8bdee8
c10205a
 
 
871cece
 
 
 
 
 
 
 
c10205a
 
 
 
 
 
 
 
f14eb51
eb29b56
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
language:
- en
license: apache-2.0
tags:
- Mixtral
- instruct
- finetune
- chatml
- DPO
- RLHF
- gpt4
- synthetic data
- distillation
- mlx
- mlx
base_model: mistralai/Mixtral-8x7B-v0.1
model-index:
- name: Nous-Hermes-2-Mixtral-8x7B-DPO
  results: []
datasets:
- euclaise/reddit-instruct-curated
- teknium/OpenHermes-2.5
---

![Alt text](https://cdn.discordapp.com/attachments/989904887330521099/1204964869565317120/Alchemist_Hermes_Illustration.jpeg?ex=65d6a5fc&is=65c430fc&hm=9939eb11dd4b7872a67019a328ad2832315a1e2ad273e2d0dc7134a5d45a58ee&)



# mlx-community/NousHermes-Mixtral-8x7B-Reddit-mlx
This model was converted to MLX format from [`mlx-community/Nous-Hermes-2-Mixtral-8x7B-DPO-4bit`]() and finetuned on a dataset of 7k selected Reddit threads.
Refer to the [original model card](https://huggingface.co/mlx-community/Nous-Hermes-2-Mixtral-8x7B-DPO-4bit) for more details on the model.
## Use with mlx


When using the model use the fromat:

Question: [your question]

Assistant:


```bash
pip install mlx-lm
```

```python
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/NousHermes-Mixtral-8x7B-Reddit-mlx")
response = generate(model, tokenizer, prompt="Question:ELI5 quantum mechanics. Assistant:", verbose=True)
```