File size: 1,260 Bytes
c10205a eb29b56 c10205a f14eb51 c10205a a8bdee8 c10205a 871cece c10205a f14eb51 eb29b56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
---
language:
- en
license: apache-2.0
tags:
- Mixtral
- instruct
- finetune
- chatml
- DPO
- RLHF
- gpt4
- synthetic data
- distillation
- mlx
- mlx
base_model: mistralai/Mixtral-8x7B-v0.1
model-index:
- name: Nous-Hermes-2-Mixtral-8x7B-DPO
results: []
datasets:
- euclaise/reddit-instruct-curated
- teknium/OpenHermes-2.5
---
![Alt text](https://cdn.discordapp.com/attachments/989904887330521099/1204964869565317120/Alchemist_Hermes_Illustration.jpeg?ex=65d6a5fc&is=65c430fc&hm=9939eb11dd4b7872a67019a328ad2832315a1e2ad273e2d0dc7134a5d45a58ee&)
# mlx-community/NousHermes-Mixtral-8x7B-Reddit-mlx
This model was converted to MLX format from [`mlx-community/Nous-Hermes-2-Mixtral-8x7B-DPO-4bit`]() and finetuned on a dataset of 7k selected Reddit threads.
Refer to the [original model card](https://huggingface.co/mlx-community/Nous-Hermes-2-Mixtral-8x7B-DPO-4bit) for more details on the model.
## Use with mlx
When using the model use the fromat:
Question: [your question]
Assistant:
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/NousHermes-Mixtral-8x7B-Reddit-mlx")
response = generate(model, tokenizer, prompt="Question:ELI5 quantum mechanics. Assistant:", verbose=True)
``` |