--- license: mit datasets: - internlm/SWE-Fixer-Eval - internlm/SWE-Fixer-Train-110K base_model: internlm/SWE-Fixer-Editor-72B pipeline_tag: text-generation tags: - code - mlx --- # mlx-community/SWE-Fixer-Editor-72B-4bit The Model [mlx-community/SWE-Fixer-Editor-72B-4bit](https://huggingface.co/mlx-community/SWE-Fixer-Editor-72B-4bit) was converted to MLX format from [internlm/SWE-Fixer-Editor-72B](https://huggingface.co/internlm/SWE-Fixer-Editor-72B) using mlx-lm version **0.21.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/SWE-Fixer-Editor-72B-4bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```