--- license: other tags: - generated_from_trainer - mlx base_model: meta-llama/Meta-Llama-3-8B datasets: - cognitivecomputations/Dolphin-2.9 - teknium/OpenHermes-2.5 - m-a-p/CodeFeedback-Filtered-Instruction - cognitivecomputations/dolphin-coder - cognitivecomputations/samantha-data - HuggingFaceH4/ultrachat_200k - microsoft/orca-math-word-problems-200k - abacusai/SystemChat-1.1 - Locutusque/function-calling-chatml - internlm/Agent-FLAN model-index: - name: out results: [] --- # mlx-community/dolphin-2.9-llama3-8b-8bit-mlx This model was converted to MLX format from [`cognitivecomputations/dolphin-2.9-llama3-8b`]() using mlx-lm version **0.10.0**. Refer to the [original model card](https://huggingface.co/cognitivecomputations/dolphin-2.9-llama3-8b) for more details on the model. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/dolphin-2.9-llama3-8b-8bit-mlx") response = generate(model, tokenizer, prompt="hello", verbose=True) ```