--- license: apache-2.0 tags: - moe train: false inference: false pipeline_tag: text-generation --- ## Mixtral-8x7B-Instruct-v0.1-hf-attn-4bit-moe-2bit-metaoffload-HQQ This is a version of the Mixtral-8x7B-Instruct-v0.1 model (https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) quantized with a mix of 4-bit and 2-bit via Half-Quadratic Quantization (HQQ). More specifically, the attention layers are quantized to 4-bit and the experts are quantized to 2-bit. The difference between this model and https://huggingface.co/mobiuslabsgmbh/Mixtral-8x7B-Instruct-v0.1-hf-attn-4bit-moe-2bit-HQQ is that this one offloads the metadata to the CPU and you only need 13GB Vram to run it instead of 20GB! ### Basic Usage To run the model, install the HQQ library from https://github.com/mobiusml/hqq and use it as follows: ``` Python model_id = 'mobiuslabsgmbh/Mixtral-8x7B-Instruct-v0.1-hf-attn-4bit-moe-2bit-metaoffload-HQQ' #Load the model from hqq.engine.hf import HQQModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(model_id) model = HQQModelForCausalLM.from_quantized(model_id) #Optional from hqq.core.quantize import * HQQLinear.set_backend(HQQBackend.PYTORCH_COMPILE) #Text Generation prompt = " [INST] How do I build a car? [/INST] " inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False) outputs = model.generate(**(inputs.to('cuda')), max_new_tokens=1000) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ----------------------------------------------------------------------------------------------------------------------------------

### Quantization You can reproduce the model using the following quant configs: ``` Python from hqq.engine.hf import HQQModelForCausalLM, AutoTokenizer model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1" model = HQQModelForCausalLM.from_pretrained(model_id, use_auth_token=hf_auth, cache_dir=cache_path) #Quantize params from hqq.core.quantize import * attn_prams = BaseQuantizeConfig(nbits=4, group_size=64, offload_meta=True) experts_params = BaseQuantizeConfig(nbits=2, group_size=16, offload_meta=True) attn_prams['scale_quant_params']['group_size'] = 256 attn_prams['zero_quant_params']['group_size'] = 256 quant_config = {} #Attention quant_config['self_attn.q_proj'] = attn_prams quant_config['self_attn.k_proj'] = attn_prams quant_config['self_attn.v_proj'] = attn_prams quant_config['self_attn.o_proj'] = attn_prams #Experts quant_config['block_sparse_moe.experts.w1'] = experts_params quant_config['block_sparse_moe.experts.w2'] = experts_params quant_config['block_sparse_moe.experts.w3'] = experts_params #Quantize model.quantize_model(quant_config=quant_config, compute_dtype=torch.float16); model.eval(); ```