--- license: mit tags: - trl - sft - text-generation-inference language: - en - zh base_model: - HuggingFaceTB/SmolLM2-360M-Instruct pipeline_tag: text-generation library_name: transformers --- # **SmolR** ### Transformers ```bash pip install transformers ``` ```python from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "mohamedrasheqA/SmolR" device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(checkpoint) # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")` model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) messages = [{"role": "user", "content": "What is gravity?"}] input_text=tokenizer.apply_chat_template(messages, tokenize=False) print(input_text) inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True) print(tokenizer.decode(outputs[0])) ```