mohannad-tazi commited on
Commit
e461f8d
ยท
verified ยท
1 Parent(s): 5899665

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -51
README.md CHANGED
@@ -36,7 +36,7 @@ To use the model, you need to load it with the Hugging Face Transformers library
36
  from transformers import pipeline
37
 
38
  # Load the model
39
- nlp = pipeline("ner", model="your-username/ner-darija-darner")
40
 
41
  # Use the model
42
  text = "ู…ุญู…ุฏ ูƒุงู† ููŠ ุงู„ุฑุจุงุท."
@@ -56,6 +56,11 @@ The model is trained on a specific corpus and may not generalize well to all Mor
56
  Performance may vary depending on text quality and tagging consistency in the dataset.
57
 
58
  ---
 
 
 
 
 
59
  library_name: transformers
60
  base_model: aubmindlab/bert-base-arabertv02
61
  datasets:
@@ -70,56 +75,6 @@ pipeline_tag: token-classification
70
  license: apache-2.0
71
  ---
72
 
73
- # NER Model for Moroccan Dialect (Darija)
74
-
75
- This model is fine-tuned for Named Entity Recognition (NER) in Moroccan Arabic (Darija). It recognizes entities such as locations, organizations, and person names in text written in Darija.
76
-
77
- ## Base Model
78
-
79
- This model is fine-tuned from the [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) model, which is optimized for Arabic NLP tasks.
80
-
81
- ## Dataset
82
-
83
- The model is trained on the **DarNERcorp** dataset, a corpus designed for Named Entity Recognition in the Moroccan Arabic dialect.
84
-
85
- ## Task
86
-
87
- The model is designed for the **token-classification** task, specifically Named Entity Recognition (NER).
88
-
89
- ### NER Tags
90
- The model recognizes the following tags:
91
- - **PER**: Person names
92
- - **LOC**: Locations
93
- - **ORG**: Organizations
94
- - **MISC**: Miscellaneous entities
95
-
96
- ## Evaluation Results
97
-
98
- The model achieves the following results on the evaluation dataset:
99
- - **Precision**: 74.04%
100
- - **Recall**: 85.16%
101
- - **F1 Score**: 78.61%
102
-
103
- ## Intended Use
104
-
105
- This model is intended for extracting named entities from Moroccan Arabic (Darija) text. It can be applied to:
106
- - Social media content
107
- - News articles
108
- - Other informal or formal texts in Darija
109
-
110
- ## How to Use
111
-
112
- You can use this model with the Hugging Face Transformers library:
113
-
114
- ```python
115
- from transformers import pipeline
116
-
117
- # Load the model
118
- nlp = pipeline("ner", model="ymohannad-tazi/ner-darija-darner")
119
 
120
- # Use the model
121
- text = "ู…ุญู…ุฏ ูƒุงู† ููŠ ุงู„ุฑุจุงุท."
122
- result = nlp(text)
123
- print(result)
124
 
125
 
 
36
  from transformers import pipeline
37
 
38
  # Load the model
39
+ nlp = pipeline("ner", model="mohannad-tazi/ner-darija-darner")
40
 
41
  # Use the model
42
  text = "ู…ุญู…ุฏ ูƒุงู† ููŠ ุงู„ุฑุจุงุท."
 
56
  Performance may vary depending on text quality and tagging consistency in the dataset.
57
 
58
  ---
59
+ model-index:
60
+ - name: NER_Darija_MAR_FSBM
61
+ results:
62
+ - task:
63
+ type: ner
64
  library_name: transformers
65
  base_model: aubmindlab/bert-base-arabertv02
66
  datasets:
 
75
  license: apache-2.0
76
  ---
77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
 
 
 
 
 
79
 
80