Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +202 -0
- adapter_config.json +32 -0
- adapter_model.safetensors +3 -0
- global_step286/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- global_step286/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- global_step286/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- global_step286/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- global_step286/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- global_step286/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- global_step286/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- global_step286/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- latest +1 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +17 -0
- tokenizer.json +3 -0
- tokenizer_config.json +2064 -0
- trainer_state.json +2441 -0
- training_args.bin +3 -0
- zero_to_fp32.py +760 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: meta-llama/Llama-3.1-8B-Instruct
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.14.0
|
adapter_config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "meta-llama/Llama-3.1-8B-Instruct",
|
5 |
+
"bias": "none",
|
6 |
+
"eva_config": null,
|
7 |
+
"exclude_modules": null,
|
8 |
+
"fan_in_fan_out": false,
|
9 |
+
"inference_mode": true,
|
10 |
+
"init_lora_weights": true,
|
11 |
+
"layer_replication": null,
|
12 |
+
"layers_pattern": null,
|
13 |
+
"layers_to_transform": null,
|
14 |
+
"loftq_config": {},
|
15 |
+
"lora_alpha": 16,
|
16 |
+
"lora_bias": false,
|
17 |
+
"lora_dropout": 0.05,
|
18 |
+
"megatron_config": null,
|
19 |
+
"megatron_core": "megatron.core",
|
20 |
+
"modules_to_save": null,
|
21 |
+
"peft_type": "LORA",
|
22 |
+
"r": 64,
|
23 |
+
"rank_pattern": {},
|
24 |
+
"revision": null,
|
25 |
+
"target_modules": [
|
26 |
+
"v_proj",
|
27 |
+
"q_proj"
|
28 |
+
],
|
29 |
+
"task_type": "CAUSAL_LM",
|
30 |
+
"use_dora": false,
|
31 |
+
"use_rslora": false
|
32 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f615f745f5ee56247148c0efbe47617665de515e79bd9998d445379c78d24b97
|
3 |
+
size 54543312
|
global_step286/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:438d57fcaca36cdaf68c9083a68cd2a509eaaf27a527f7712d5316ee7b3d4298
|
3 |
+
size 81792496
|
global_step286/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82c31f47ad9c36cc572ded009dcc1aeafff712b308868c1d4304860d551ab37d
|
3 |
+
size 81792496
|
global_step286/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67188ae4b0f0a122a011337d3dd056f2418e8d9a284ed299d9655d2bff4c49b0
|
3 |
+
size 81792496
|
global_step286/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47d75826523a2ae376d356b05be13e9748d481f8f36067e7611b997e5a02bcf8
|
3 |
+
size 81792496
|
global_step286/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19de5b1de27b5ede1bd68f898c6a52fa298d95dbc8bcc29b32093c2be795b12f
|
3 |
+
size 152238
|
global_step286/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd0b1f13a533f8aeaeac00c8776c8587f28b64a3b27bc306f9808a713c59d7e6
|
3 |
+
size 152238
|
global_step286/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5be380526068207f881b6d4da00b5adb894bbeb58a9abb28dd24d93eb6290787
|
3 |
+
size 152238
|
global_step286/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec12a575a1d7ac254e7d93f23ef7cbf1018668a68133494f88da372ce536be07
|
3 |
+
size 152238
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step286
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e3130402a8ab357a1b8e3df63c3e3ce2accfb48905d39ea54a59d675df22a19
|
3 |
+
size 15024
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89b63d1a7c45a258cf2b7e98d771ea0f9c47d564207c9502bccc364d66e6620d
|
3 |
+
size 15024
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7436d711a9e4d72a1ca12a1ad34ab91095f822eeba77b3339319df27d1b3f588
|
3 |
+
size 15024
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:923073e4e63e360fad12e8fc25ea2dd00e1b2f9cde3efbc4ff6f17e843e6084c
|
3 |
+
size 15024
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ae4fc4253af7816d4b90d333c827901ff8d088bed102384dea5915fa7d3960f
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin_of_text|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|eot_id|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<|eot_id|>"
|
17 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b9e4e7fb171f92fd137b777cc2714bf87d11576700a1dcd7a399e7bbe39537b
|
3 |
+
size 17209920
|
tokenizer_config.json
ADDED
@@ -0,0 +1,2064 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"128000": {
|
4 |
+
"content": "<|begin_of_text|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"128001": {
|
12 |
+
"content": "<|end_of_text|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"128002": {
|
20 |
+
"content": "<|reserved_special_token_0|>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"128003": {
|
28 |
+
"content": "<|reserved_special_token_1|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128004": {
|
36 |
+
"content": "<|finetune_right_pad_id|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"128005": {
|
44 |
+
"content": "<|reserved_special_token_2|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"128006": {
|
52 |
+
"content": "<|start_header_id|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"128007": {
|
60 |
+
"content": "<|end_header_id|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"128008": {
|
68 |
+
"content": "<|eom_id|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"128009": {
|
76 |
+
"content": "<|eot_id|>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"128010": {
|
84 |
+
"content": "<|python_tag|>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"128011": {
|
92 |
+
"content": "<|reserved_special_token_3|>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"128012": {
|
100 |
+
"content": "<|reserved_special_token_4|>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"128013": {
|
108 |
+
"content": "<|reserved_special_token_5|>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"128014": {
|
116 |
+
"content": "<|reserved_special_token_6|>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"128015": {
|
124 |
+
"content": "<|reserved_special_token_7|>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"128016": {
|
132 |
+
"content": "<|reserved_special_token_8|>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"128017": {
|
140 |
+
"content": "<|reserved_special_token_9|>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"128018": {
|
148 |
+
"content": "<|reserved_special_token_10|>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"128019": {
|
156 |
+
"content": "<|reserved_special_token_11|>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"128020": {
|
164 |
+
"content": "<|reserved_special_token_12|>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"128021": {
|
172 |
+
"content": "<|reserved_special_token_13|>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"128022": {
|
180 |
+
"content": "<|reserved_special_token_14|>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"128023": {
|
188 |
+
"content": "<|reserved_special_token_15|>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"128024": {
|
196 |
+
"content": "<|reserved_special_token_16|>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"128025": {
|
204 |
+
"content": "<|reserved_special_token_17|>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"128026": {
|
212 |
+
"content": "<|reserved_special_token_18|>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"128027": {
|
220 |
+
"content": "<|reserved_special_token_19|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"128028": {
|
228 |
+
"content": "<|reserved_special_token_20|>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"128029": {
|
236 |
+
"content": "<|reserved_special_token_21|>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"128030": {
|
244 |
+
"content": "<|reserved_special_token_22|>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"128031": {
|
252 |
+
"content": "<|reserved_special_token_23|>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"128032": {
|
260 |
+
"content": "<|reserved_special_token_24|>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"128033": {
|
268 |
+
"content": "<|reserved_special_token_25|>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"128034": {
|
276 |
+
"content": "<|reserved_special_token_26|>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"128035": {
|
284 |
+
"content": "<|reserved_special_token_27|>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"128036": {
|
292 |
+
"content": "<|reserved_special_token_28|>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"128037": {
|
300 |
+
"content": "<|reserved_special_token_29|>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"128038": {
|
308 |
+
"content": "<|reserved_special_token_30|>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"128039": {
|
316 |
+
"content": "<|reserved_special_token_31|>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"128040": {
|
324 |
+
"content": "<|reserved_special_token_32|>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"128041": {
|
332 |
+
"content": "<|reserved_special_token_33|>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"128042": {
|
340 |
+
"content": "<|reserved_special_token_34|>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"128043": {
|
348 |
+
"content": "<|reserved_special_token_35|>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"128044": {
|
356 |
+
"content": "<|reserved_special_token_36|>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"128045": {
|
364 |
+
"content": "<|reserved_special_token_37|>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"128046": {
|
372 |
+
"content": "<|reserved_special_token_38|>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"128047": {
|
380 |
+
"content": "<|reserved_special_token_39|>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"128048": {
|
388 |
+
"content": "<|reserved_special_token_40|>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"128049": {
|
396 |
+
"content": "<|reserved_special_token_41|>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"128050": {
|
404 |
+
"content": "<|reserved_special_token_42|>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"128051": {
|
412 |
+
"content": "<|reserved_special_token_43|>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"128052": {
|
420 |
+
"content": "<|reserved_special_token_44|>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"128053": {
|
428 |
+
"content": "<|reserved_special_token_45|>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"128054": {
|
436 |
+
"content": "<|reserved_special_token_46|>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"128055": {
|
444 |
+
"content": "<|reserved_special_token_47|>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"128056": {
|
452 |
+
"content": "<|reserved_special_token_48|>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"128057": {
|
460 |
+
"content": "<|reserved_special_token_49|>",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"128058": {
|
468 |
+
"content": "<|reserved_special_token_50|>",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"128059": {
|
476 |
+
"content": "<|reserved_special_token_51|>",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"128060": {
|
484 |
+
"content": "<|reserved_special_token_52|>",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"128061": {
|
492 |
+
"content": "<|reserved_special_token_53|>",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"128062": {
|
500 |
+
"content": "<|reserved_special_token_54|>",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"128063": {
|
508 |
+
"content": "<|reserved_special_token_55|>",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
},
|
515 |
+
"128064": {
|
516 |
+
"content": "<|reserved_special_token_56|>",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": true
|
522 |
+
},
|
523 |
+
"128065": {
|
524 |
+
"content": "<|reserved_special_token_57|>",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": true
|
530 |
+
},
|
531 |
+
"128066": {
|
532 |
+
"content": "<|reserved_special_token_58|>",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": true
|
538 |
+
},
|
539 |
+
"128067": {
|
540 |
+
"content": "<|reserved_special_token_59|>",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": true
|
546 |
+
},
|
547 |
+
"128068": {
|
548 |
+
"content": "<|reserved_special_token_60|>",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": true
|
554 |
+
},
|
555 |
+
"128069": {
|
556 |
+
"content": "<|reserved_special_token_61|>",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": true
|
562 |
+
},
|
563 |
+
"128070": {
|
564 |
+
"content": "<|reserved_special_token_62|>",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": true
|
570 |
+
},
|
571 |
+
"128071": {
|
572 |
+
"content": "<|reserved_special_token_63|>",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"128072": {
|
580 |
+
"content": "<|reserved_special_token_64|>",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"128073": {
|
588 |
+
"content": "<|reserved_special_token_65|>",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
},
|
595 |
+
"128074": {
|
596 |
+
"content": "<|reserved_special_token_66|>",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": true
|
602 |
+
},
|
603 |
+
"128075": {
|
604 |
+
"content": "<|reserved_special_token_67|>",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": true
|
610 |
+
},
|
611 |
+
"128076": {
|
612 |
+
"content": "<|reserved_special_token_68|>",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": true
|
618 |
+
},
|
619 |
+
"128077": {
|
620 |
+
"content": "<|reserved_special_token_69|>",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": true
|
626 |
+
},
|
627 |
+
"128078": {
|
628 |
+
"content": "<|reserved_special_token_70|>",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": true
|
634 |
+
},
|
635 |
+
"128079": {
|
636 |
+
"content": "<|reserved_special_token_71|>",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": true
|
642 |
+
},
|
643 |
+
"128080": {
|
644 |
+
"content": "<|reserved_special_token_72|>",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": true
|
650 |
+
},
|
651 |
+
"128081": {
|
652 |
+
"content": "<|reserved_special_token_73|>",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": true
|
658 |
+
},
|
659 |
+
"128082": {
|
660 |
+
"content": "<|reserved_special_token_74|>",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": true
|
666 |
+
},
|
667 |
+
"128083": {
|
668 |
+
"content": "<|reserved_special_token_75|>",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": true
|
674 |
+
},
|
675 |
+
"128084": {
|
676 |
+
"content": "<|reserved_special_token_76|>",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": true
|
682 |
+
},
|
683 |
+
"128085": {
|
684 |
+
"content": "<|reserved_special_token_77|>",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": true
|
690 |
+
},
|
691 |
+
"128086": {
|
692 |
+
"content": "<|reserved_special_token_78|>",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": true
|
698 |
+
},
|
699 |
+
"128087": {
|
700 |
+
"content": "<|reserved_special_token_79|>",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": true
|
706 |
+
},
|
707 |
+
"128088": {
|
708 |
+
"content": "<|reserved_special_token_80|>",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": true
|
714 |
+
},
|
715 |
+
"128089": {
|
716 |
+
"content": "<|reserved_special_token_81|>",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": true
|
722 |
+
},
|
723 |
+
"128090": {
|
724 |
+
"content": "<|reserved_special_token_82|>",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": true
|
730 |
+
},
|
731 |
+
"128091": {
|
732 |
+
"content": "<|reserved_special_token_83|>",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": true
|
738 |
+
},
|
739 |
+
"128092": {
|
740 |
+
"content": "<|reserved_special_token_84|>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": true
|
746 |
+
},
|
747 |
+
"128093": {
|
748 |
+
"content": "<|reserved_special_token_85|>",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": true
|
754 |
+
},
|
755 |
+
"128094": {
|
756 |
+
"content": "<|reserved_special_token_86|>",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": true
|
762 |
+
},
|
763 |
+
"128095": {
|
764 |
+
"content": "<|reserved_special_token_87|>",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": true
|
770 |
+
},
|
771 |
+
"128096": {
|
772 |
+
"content": "<|reserved_special_token_88|>",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": true
|
778 |
+
},
|
779 |
+
"128097": {
|
780 |
+
"content": "<|reserved_special_token_89|>",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": true
|
786 |
+
},
|
787 |
+
"128098": {
|
788 |
+
"content": "<|reserved_special_token_90|>",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": true
|
794 |
+
},
|
795 |
+
"128099": {
|
796 |
+
"content": "<|reserved_special_token_91|>",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": true
|
802 |
+
},
|
803 |
+
"128100": {
|
804 |
+
"content": "<|reserved_special_token_92|>",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": true
|
810 |
+
},
|
811 |
+
"128101": {
|
812 |
+
"content": "<|reserved_special_token_93|>",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": true
|
818 |
+
},
|
819 |
+
"128102": {
|
820 |
+
"content": "<|reserved_special_token_94|>",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": true
|
826 |
+
},
|
827 |
+
"128103": {
|
828 |
+
"content": "<|reserved_special_token_95|>",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
},
|
835 |
+
"128104": {
|
836 |
+
"content": "<|reserved_special_token_96|>",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": true
|
842 |
+
},
|
843 |
+
"128105": {
|
844 |
+
"content": "<|reserved_special_token_97|>",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": true
|
850 |
+
},
|
851 |
+
"128106": {
|
852 |
+
"content": "<|reserved_special_token_98|>",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": false,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": true
|
858 |
+
},
|
859 |
+
"128107": {
|
860 |
+
"content": "<|reserved_special_token_99|>",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": false,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": true
|
866 |
+
},
|
867 |
+
"128108": {
|
868 |
+
"content": "<|reserved_special_token_100|>",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": false,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": true
|
874 |
+
},
|
875 |
+
"128109": {
|
876 |
+
"content": "<|reserved_special_token_101|>",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": false,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": true
|
882 |
+
},
|
883 |
+
"128110": {
|
884 |
+
"content": "<|reserved_special_token_102|>",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": false,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": true
|
890 |
+
},
|
891 |
+
"128111": {
|
892 |
+
"content": "<|reserved_special_token_103|>",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": false,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": true
|
898 |
+
},
|
899 |
+
"128112": {
|
900 |
+
"content": "<|reserved_special_token_104|>",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": false,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": true
|
906 |
+
},
|
907 |
+
"128113": {
|
908 |
+
"content": "<|reserved_special_token_105|>",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": false,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": true
|
914 |
+
},
|
915 |
+
"128114": {
|
916 |
+
"content": "<|reserved_special_token_106|>",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": false,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": true
|
922 |
+
},
|
923 |
+
"128115": {
|
924 |
+
"content": "<|reserved_special_token_107|>",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": false,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": true
|
930 |
+
},
|
931 |
+
"128116": {
|
932 |
+
"content": "<|reserved_special_token_108|>",
|
933 |
+
"lstrip": false,
|
934 |
+
"normalized": false,
|
935 |
+
"rstrip": false,
|
936 |
+
"single_word": false,
|
937 |
+
"special": true
|
938 |
+
},
|
939 |
+
"128117": {
|
940 |
+
"content": "<|reserved_special_token_109|>",
|
941 |
+
"lstrip": false,
|
942 |
+
"normalized": false,
|
943 |
+
"rstrip": false,
|
944 |
+
"single_word": false,
|
945 |
+
"special": true
|
946 |
+
},
|
947 |
+
"128118": {
|
948 |
+
"content": "<|reserved_special_token_110|>",
|
949 |
+
"lstrip": false,
|
950 |
+
"normalized": false,
|
951 |
+
"rstrip": false,
|
952 |
+
"single_word": false,
|
953 |
+
"special": true
|
954 |
+
},
|
955 |
+
"128119": {
|
956 |
+
"content": "<|reserved_special_token_111|>",
|
957 |
+
"lstrip": false,
|
958 |
+
"normalized": false,
|
959 |
+
"rstrip": false,
|
960 |
+
"single_word": false,
|
961 |
+
"special": true
|
962 |
+
},
|
963 |
+
"128120": {
|
964 |
+
"content": "<|reserved_special_token_112|>",
|
965 |
+
"lstrip": false,
|
966 |
+
"normalized": false,
|
967 |
+
"rstrip": false,
|
968 |
+
"single_word": false,
|
969 |
+
"special": true
|
970 |
+
},
|
971 |
+
"128121": {
|
972 |
+
"content": "<|reserved_special_token_113|>",
|
973 |
+
"lstrip": false,
|
974 |
+
"normalized": false,
|
975 |
+
"rstrip": false,
|
976 |
+
"single_word": false,
|
977 |
+
"special": true
|
978 |
+
},
|
979 |
+
"128122": {
|
980 |
+
"content": "<|reserved_special_token_114|>",
|
981 |
+
"lstrip": false,
|
982 |
+
"normalized": false,
|
983 |
+
"rstrip": false,
|
984 |
+
"single_word": false,
|
985 |
+
"special": true
|
986 |
+
},
|
987 |
+
"128123": {
|
988 |
+
"content": "<|reserved_special_token_115|>",
|
989 |
+
"lstrip": false,
|
990 |
+
"normalized": false,
|
991 |
+
"rstrip": false,
|
992 |
+
"single_word": false,
|
993 |
+
"special": true
|
994 |
+
},
|
995 |
+
"128124": {
|
996 |
+
"content": "<|reserved_special_token_116|>",
|
997 |
+
"lstrip": false,
|
998 |
+
"normalized": false,
|
999 |
+
"rstrip": false,
|
1000 |
+
"single_word": false,
|
1001 |
+
"special": true
|
1002 |
+
},
|
1003 |
+
"128125": {
|
1004 |
+
"content": "<|reserved_special_token_117|>",
|
1005 |
+
"lstrip": false,
|
1006 |
+
"normalized": false,
|
1007 |
+
"rstrip": false,
|
1008 |
+
"single_word": false,
|
1009 |
+
"special": true
|
1010 |
+
},
|
1011 |
+
"128126": {
|
1012 |
+
"content": "<|reserved_special_token_118|>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false,
|
1017 |
+
"special": true
|
1018 |
+
},
|
1019 |
+
"128127": {
|
1020 |
+
"content": "<|reserved_special_token_119|>",
|
1021 |
+
"lstrip": false,
|
1022 |
+
"normalized": false,
|
1023 |
+
"rstrip": false,
|
1024 |
+
"single_word": false,
|
1025 |
+
"special": true
|
1026 |
+
},
|
1027 |
+
"128128": {
|
1028 |
+
"content": "<|reserved_special_token_120|>",
|
1029 |
+
"lstrip": false,
|
1030 |
+
"normalized": false,
|
1031 |
+
"rstrip": false,
|
1032 |
+
"single_word": false,
|
1033 |
+
"special": true
|
1034 |
+
},
|
1035 |
+
"128129": {
|
1036 |
+
"content": "<|reserved_special_token_121|>",
|
1037 |
+
"lstrip": false,
|
1038 |
+
"normalized": false,
|
1039 |
+
"rstrip": false,
|
1040 |
+
"single_word": false,
|
1041 |
+
"special": true
|
1042 |
+
},
|
1043 |
+
"128130": {
|
1044 |
+
"content": "<|reserved_special_token_122|>",
|
1045 |
+
"lstrip": false,
|
1046 |
+
"normalized": false,
|
1047 |
+
"rstrip": false,
|
1048 |
+
"single_word": false,
|
1049 |
+
"special": true
|
1050 |
+
},
|
1051 |
+
"128131": {
|
1052 |
+
"content": "<|reserved_special_token_123|>",
|
1053 |
+
"lstrip": false,
|
1054 |
+
"normalized": false,
|
1055 |
+
"rstrip": false,
|
1056 |
+
"single_word": false,
|
1057 |
+
"special": true
|
1058 |
+
},
|
1059 |
+
"128132": {
|
1060 |
+
"content": "<|reserved_special_token_124|>",
|
1061 |
+
"lstrip": false,
|
1062 |
+
"normalized": false,
|
1063 |
+
"rstrip": false,
|
1064 |
+
"single_word": false,
|
1065 |
+
"special": true
|
1066 |
+
},
|
1067 |
+
"128133": {
|
1068 |
+
"content": "<|reserved_special_token_125|>",
|
1069 |
+
"lstrip": false,
|
1070 |
+
"normalized": false,
|
1071 |
+
"rstrip": false,
|
1072 |
+
"single_word": false,
|
1073 |
+
"special": true
|
1074 |
+
},
|
1075 |
+
"128134": {
|
1076 |
+
"content": "<|reserved_special_token_126|>",
|
1077 |
+
"lstrip": false,
|
1078 |
+
"normalized": false,
|
1079 |
+
"rstrip": false,
|
1080 |
+
"single_word": false,
|
1081 |
+
"special": true
|
1082 |
+
},
|
1083 |
+
"128135": {
|
1084 |
+
"content": "<|reserved_special_token_127|>",
|
1085 |
+
"lstrip": false,
|
1086 |
+
"normalized": false,
|
1087 |
+
"rstrip": false,
|
1088 |
+
"single_word": false,
|
1089 |
+
"special": true
|
1090 |
+
},
|
1091 |
+
"128136": {
|
1092 |
+
"content": "<|reserved_special_token_128|>",
|
1093 |
+
"lstrip": false,
|
1094 |
+
"normalized": false,
|
1095 |
+
"rstrip": false,
|
1096 |
+
"single_word": false,
|
1097 |
+
"special": true
|
1098 |
+
},
|
1099 |
+
"128137": {
|
1100 |
+
"content": "<|reserved_special_token_129|>",
|
1101 |
+
"lstrip": false,
|
1102 |
+
"normalized": false,
|
1103 |
+
"rstrip": false,
|
1104 |
+
"single_word": false,
|
1105 |
+
"special": true
|
1106 |
+
},
|
1107 |
+
"128138": {
|
1108 |
+
"content": "<|reserved_special_token_130|>",
|
1109 |
+
"lstrip": false,
|
1110 |
+
"normalized": false,
|
1111 |
+
"rstrip": false,
|
1112 |
+
"single_word": false,
|
1113 |
+
"special": true
|
1114 |
+
},
|
1115 |
+
"128139": {
|
1116 |
+
"content": "<|reserved_special_token_131|>",
|
1117 |
+
"lstrip": false,
|
1118 |
+
"normalized": false,
|
1119 |
+
"rstrip": false,
|
1120 |
+
"single_word": false,
|
1121 |
+
"special": true
|
1122 |
+
},
|
1123 |
+
"128140": {
|
1124 |
+
"content": "<|reserved_special_token_132|>",
|
1125 |
+
"lstrip": false,
|
1126 |
+
"normalized": false,
|
1127 |
+
"rstrip": false,
|
1128 |
+
"single_word": false,
|
1129 |
+
"special": true
|
1130 |
+
},
|
1131 |
+
"128141": {
|
1132 |
+
"content": "<|reserved_special_token_133|>",
|
1133 |
+
"lstrip": false,
|
1134 |
+
"normalized": false,
|
1135 |
+
"rstrip": false,
|
1136 |
+
"single_word": false,
|
1137 |
+
"special": true
|
1138 |
+
},
|
1139 |
+
"128142": {
|
1140 |
+
"content": "<|reserved_special_token_134|>",
|
1141 |
+
"lstrip": false,
|
1142 |
+
"normalized": false,
|
1143 |
+
"rstrip": false,
|
1144 |
+
"single_word": false,
|
1145 |
+
"special": true
|
1146 |
+
},
|
1147 |
+
"128143": {
|
1148 |
+
"content": "<|reserved_special_token_135|>",
|
1149 |
+
"lstrip": false,
|
1150 |
+
"normalized": false,
|
1151 |
+
"rstrip": false,
|
1152 |
+
"single_word": false,
|
1153 |
+
"special": true
|
1154 |
+
},
|
1155 |
+
"128144": {
|
1156 |
+
"content": "<|reserved_special_token_136|>",
|
1157 |
+
"lstrip": false,
|
1158 |
+
"normalized": false,
|
1159 |
+
"rstrip": false,
|
1160 |
+
"single_word": false,
|
1161 |
+
"special": true
|
1162 |
+
},
|
1163 |
+
"128145": {
|
1164 |
+
"content": "<|reserved_special_token_137|>",
|
1165 |
+
"lstrip": false,
|
1166 |
+
"normalized": false,
|
1167 |
+
"rstrip": false,
|
1168 |
+
"single_word": false,
|
1169 |
+
"special": true
|
1170 |
+
},
|
1171 |
+
"128146": {
|
1172 |
+
"content": "<|reserved_special_token_138|>",
|
1173 |
+
"lstrip": false,
|
1174 |
+
"normalized": false,
|
1175 |
+
"rstrip": false,
|
1176 |
+
"single_word": false,
|
1177 |
+
"special": true
|
1178 |
+
},
|
1179 |
+
"128147": {
|
1180 |
+
"content": "<|reserved_special_token_139|>",
|
1181 |
+
"lstrip": false,
|
1182 |
+
"normalized": false,
|
1183 |
+
"rstrip": false,
|
1184 |
+
"single_word": false,
|
1185 |
+
"special": true
|
1186 |
+
},
|
1187 |
+
"128148": {
|
1188 |
+
"content": "<|reserved_special_token_140|>",
|
1189 |
+
"lstrip": false,
|
1190 |
+
"normalized": false,
|
1191 |
+
"rstrip": false,
|
1192 |
+
"single_word": false,
|
1193 |
+
"special": true
|
1194 |
+
},
|
1195 |
+
"128149": {
|
1196 |
+
"content": "<|reserved_special_token_141|>",
|
1197 |
+
"lstrip": false,
|
1198 |
+
"normalized": false,
|
1199 |
+
"rstrip": false,
|
1200 |
+
"single_word": false,
|
1201 |
+
"special": true
|
1202 |
+
},
|
1203 |
+
"128150": {
|
1204 |
+
"content": "<|reserved_special_token_142|>",
|
1205 |
+
"lstrip": false,
|
1206 |
+
"normalized": false,
|
1207 |
+
"rstrip": false,
|
1208 |
+
"single_word": false,
|
1209 |
+
"special": true
|
1210 |
+
},
|
1211 |
+
"128151": {
|
1212 |
+
"content": "<|reserved_special_token_143|>",
|
1213 |
+
"lstrip": false,
|
1214 |
+
"normalized": false,
|
1215 |
+
"rstrip": false,
|
1216 |
+
"single_word": false,
|
1217 |
+
"special": true
|
1218 |
+
},
|
1219 |
+
"128152": {
|
1220 |
+
"content": "<|reserved_special_token_144|>",
|
1221 |
+
"lstrip": false,
|
1222 |
+
"normalized": false,
|
1223 |
+
"rstrip": false,
|
1224 |
+
"single_word": false,
|
1225 |
+
"special": true
|
1226 |
+
},
|
1227 |
+
"128153": {
|
1228 |
+
"content": "<|reserved_special_token_145|>",
|
1229 |
+
"lstrip": false,
|
1230 |
+
"normalized": false,
|
1231 |
+
"rstrip": false,
|
1232 |
+
"single_word": false,
|
1233 |
+
"special": true
|
1234 |
+
},
|
1235 |
+
"128154": {
|
1236 |
+
"content": "<|reserved_special_token_146|>",
|
1237 |
+
"lstrip": false,
|
1238 |
+
"normalized": false,
|
1239 |
+
"rstrip": false,
|
1240 |
+
"single_word": false,
|
1241 |
+
"special": true
|
1242 |
+
},
|
1243 |
+
"128155": {
|
1244 |
+
"content": "<|reserved_special_token_147|>",
|
1245 |
+
"lstrip": false,
|
1246 |
+
"normalized": false,
|
1247 |
+
"rstrip": false,
|
1248 |
+
"single_word": false,
|
1249 |
+
"special": true
|
1250 |
+
},
|
1251 |
+
"128156": {
|
1252 |
+
"content": "<|reserved_special_token_148|>",
|
1253 |
+
"lstrip": false,
|
1254 |
+
"normalized": false,
|
1255 |
+
"rstrip": false,
|
1256 |
+
"single_word": false,
|
1257 |
+
"special": true
|
1258 |
+
},
|
1259 |
+
"128157": {
|
1260 |
+
"content": "<|reserved_special_token_149|>",
|
1261 |
+
"lstrip": false,
|
1262 |
+
"normalized": false,
|
1263 |
+
"rstrip": false,
|
1264 |
+
"single_word": false,
|
1265 |
+
"special": true
|
1266 |
+
},
|
1267 |
+
"128158": {
|
1268 |
+
"content": "<|reserved_special_token_150|>",
|
1269 |
+
"lstrip": false,
|
1270 |
+
"normalized": false,
|
1271 |
+
"rstrip": false,
|
1272 |
+
"single_word": false,
|
1273 |
+
"special": true
|
1274 |
+
},
|
1275 |
+
"128159": {
|
1276 |
+
"content": "<|reserved_special_token_151|>",
|
1277 |
+
"lstrip": false,
|
1278 |
+
"normalized": false,
|
1279 |
+
"rstrip": false,
|
1280 |
+
"single_word": false,
|
1281 |
+
"special": true
|
1282 |
+
},
|
1283 |
+
"128160": {
|
1284 |
+
"content": "<|reserved_special_token_152|>",
|
1285 |
+
"lstrip": false,
|
1286 |
+
"normalized": false,
|
1287 |
+
"rstrip": false,
|
1288 |
+
"single_word": false,
|
1289 |
+
"special": true
|
1290 |
+
},
|
1291 |
+
"128161": {
|
1292 |
+
"content": "<|reserved_special_token_153|>",
|
1293 |
+
"lstrip": false,
|
1294 |
+
"normalized": false,
|
1295 |
+
"rstrip": false,
|
1296 |
+
"single_word": false,
|
1297 |
+
"special": true
|
1298 |
+
},
|
1299 |
+
"128162": {
|
1300 |
+
"content": "<|reserved_special_token_154|>",
|
1301 |
+
"lstrip": false,
|
1302 |
+
"normalized": false,
|
1303 |
+
"rstrip": false,
|
1304 |
+
"single_word": false,
|
1305 |
+
"special": true
|
1306 |
+
},
|
1307 |
+
"128163": {
|
1308 |
+
"content": "<|reserved_special_token_155|>",
|
1309 |
+
"lstrip": false,
|
1310 |
+
"normalized": false,
|
1311 |
+
"rstrip": false,
|
1312 |
+
"single_word": false,
|
1313 |
+
"special": true
|
1314 |
+
},
|
1315 |
+
"128164": {
|
1316 |
+
"content": "<|reserved_special_token_156|>",
|
1317 |
+
"lstrip": false,
|
1318 |
+
"normalized": false,
|
1319 |
+
"rstrip": false,
|
1320 |
+
"single_word": false,
|
1321 |
+
"special": true
|
1322 |
+
},
|
1323 |
+
"128165": {
|
1324 |
+
"content": "<|reserved_special_token_157|>",
|
1325 |
+
"lstrip": false,
|
1326 |
+
"normalized": false,
|
1327 |
+
"rstrip": false,
|
1328 |
+
"single_word": false,
|
1329 |
+
"special": true
|
1330 |
+
},
|
1331 |
+
"128166": {
|
1332 |
+
"content": "<|reserved_special_token_158|>",
|
1333 |
+
"lstrip": false,
|
1334 |
+
"normalized": false,
|
1335 |
+
"rstrip": false,
|
1336 |
+
"single_word": false,
|
1337 |
+
"special": true
|
1338 |
+
},
|
1339 |
+
"128167": {
|
1340 |
+
"content": "<|reserved_special_token_159|>",
|
1341 |
+
"lstrip": false,
|
1342 |
+
"normalized": false,
|
1343 |
+
"rstrip": false,
|
1344 |
+
"single_word": false,
|
1345 |
+
"special": true
|
1346 |
+
},
|
1347 |
+
"128168": {
|
1348 |
+
"content": "<|reserved_special_token_160|>",
|
1349 |
+
"lstrip": false,
|
1350 |
+
"normalized": false,
|
1351 |
+
"rstrip": false,
|
1352 |
+
"single_word": false,
|
1353 |
+
"special": true
|
1354 |
+
},
|
1355 |
+
"128169": {
|
1356 |
+
"content": "<|reserved_special_token_161|>",
|
1357 |
+
"lstrip": false,
|
1358 |
+
"normalized": false,
|
1359 |
+
"rstrip": false,
|
1360 |
+
"single_word": false,
|
1361 |
+
"special": true
|
1362 |
+
},
|
1363 |
+
"128170": {
|
1364 |
+
"content": "<|reserved_special_token_162|>",
|
1365 |
+
"lstrip": false,
|
1366 |
+
"normalized": false,
|
1367 |
+
"rstrip": false,
|
1368 |
+
"single_word": false,
|
1369 |
+
"special": true
|
1370 |
+
},
|
1371 |
+
"128171": {
|
1372 |
+
"content": "<|reserved_special_token_163|>",
|
1373 |
+
"lstrip": false,
|
1374 |
+
"normalized": false,
|
1375 |
+
"rstrip": false,
|
1376 |
+
"single_word": false,
|
1377 |
+
"special": true
|
1378 |
+
},
|
1379 |
+
"128172": {
|
1380 |
+
"content": "<|reserved_special_token_164|>",
|
1381 |
+
"lstrip": false,
|
1382 |
+
"normalized": false,
|
1383 |
+
"rstrip": false,
|
1384 |
+
"single_word": false,
|
1385 |
+
"special": true
|
1386 |
+
},
|
1387 |
+
"128173": {
|
1388 |
+
"content": "<|reserved_special_token_165|>",
|
1389 |
+
"lstrip": false,
|
1390 |
+
"normalized": false,
|
1391 |
+
"rstrip": false,
|
1392 |
+
"single_word": false,
|
1393 |
+
"special": true
|
1394 |
+
},
|
1395 |
+
"128174": {
|
1396 |
+
"content": "<|reserved_special_token_166|>",
|
1397 |
+
"lstrip": false,
|
1398 |
+
"normalized": false,
|
1399 |
+
"rstrip": false,
|
1400 |
+
"single_word": false,
|
1401 |
+
"special": true
|
1402 |
+
},
|
1403 |
+
"128175": {
|
1404 |
+
"content": "<|reserved_special_token_167|>",
|
1405 |
+
"lstrip": false,
|
1406 |
+
"normalized": false,
|
1407 |
+
"rstrip": false,
|
1408 |
+
"single_word": false,
|
1409 |
+
"special": true
|
1410 |
+
},
|
1411 |
+
"128176": {
|
1412 |
+
"content": "<|reserved_special_token_168|>",
|
1413 |
+
"lstrip": false,
|
1414 |
+
"normalized": false,
|
1415 |
+
"rstrip": false,
|
1416 |
+
"single_word": false,
|
1417 |
+
"special": true
|
1418 |
+
},
|
1419 |
+
"128177": {
|
1420 |
+
"content": "<|reserved_special_token_169|>",
|
1421 |
+
"lstrip": false,
|
1422 |
+
"normalized": false,
|
1423 |
+
"rstrip": false,
|
1424 |
+
"single_word": false,
|
1425 |
+
"special": true
|
1426 |
+
},
|
1427 |
+
"128178": {
|
1428 |
+
"content": "<|reserved_special_token_170|>",
|
1429 |
+
"lstrip": false,
|
1430 |
+
"normalized": false,
|
1431 |
+
"rstrip": false,
|
1432 |
+
"single_word": false,
|
1433 |
+
"special": true
|
1434 |
+
},
|
1435 |
+
"128179": {
|
1436 |
+
"content": "<|reserved_special_token_171|>",
|
1437 |
+
"lstrip": false,
|
1438 |
+
"normalized": false,
|
1439 |
+
"rstrip": false,
|
1440 |
+
"single_word": false,
|
1441 |
+
"special": true
|
1442 |
+
},
|
1443 |
+
"128180": {
|
1444 |
+
"content": "<|reserved_special_token_172|>",
|
1445 |
+
"lstrip": false,
|
1446 |
+
"normalized": false,
|
1447 |
+
"rstrip": false,
|
1448 |
+
"single_word": false,
|
1449 |
+
"special": true
|
1450 |
+
},
|
1451 |
+
"128181": {
|
1452 |
+
"content": "<|reserved_special_token_173|>",
|
1453 |
+
"lstrip": false,
|
1454 |
+
"normalized": false,
|
1455 |
+
"rstrip": false,
|
1456 |
+
"single_word": false,
|
1457 |
+
"special": true
|
1458 |
+
},
|
1459 |
+
"128182": {
|
1460 |
+
"content": "<|reserved_special_token_174|>",
|
1461 |
+
"lstrip": false,
|
1462 |
+
"normalized": false,
|
1463 |
+
"rstrip": false,
|
1464 |
+
"single_word": false,
|
1465 |
+
"special": true
|
1466 |
+
},
|
1467 |
+
"128183": {
|
1468 |
+
"content": "<|reserved_special_token_175|>",
|
1469 |
+
"lstrip": false,
|
1470 |
+
"normalized": false,
|
1471 |
+
"rstrip": false,
|
1472 |
+
"single_word": false,
|
1473 |
+
"special": true
|
1474 |
+
},
|
1475 |
+
"128184": {
|
1476 |
+
"content": "<|reserved_special_token_176|>",
|
1477 |
+
"lstrip": false,
|
1478 |
+
"normalized": false,
|
1479 |
+
"rstrip": false,
|
1480 |
+
"single_word": false,
|
1481 |
+
"special": true
|
1482 |
+
},
|
1483 |
+
"128185": {
|
1484 |
+
"content": "<|reserved_special_token_177|>",
|
1485 |
+
"lstrip": false,
|
1486 |
+
"normalized": false,
|
1487 |
+
"rstrip": false,
|
1488 |
+
"single_word": false,
|
1489 |
+
"special": true
|
1490 |
+
},
|
1491 |
+
"128186": {
|
1492 |
+
"content": "<|reserved_special_token_178|>",
|
1493 |
+
"lstrip": false,
|
1494 |
+
"normalized": false,
|
1495 |
+
"rstrip": false,
|
1496 |
+
"single_word": false,
|
1497 |
+
"special": true
|
1498 |
+
},
|
1499 |
+
"128187": {
|
1500 |
+
"content": "<|reserved_special_token_179|>",
|
1501 |
+
"lstrip": false,
|
1502 |
+
"normalized": false,
|
1503 |
+
"rstrip": false,
|
1504 |
+
"single_word": false,
|
1505 |
+
"special": true
|
1506 |
+
},
|
1507 |
+
"128188": {
|
1508 |
+
"content": "<|reserved_special_token_180|>",
|
1509 |
+
"lstrip": false,
|
1510 |
+
"normalized": false,
|
1511 |
+
"rstrip": false,
|
1512 |
+
"single_word": false,
|
1513 |
+
"special": true
|
1514 |
+
},
|
1515 |
+
"128189": {
|
1516 |
+
"content": "<|reserved_special_token_181|>",
|
1517 |
+
"lstrip": false,
|
1518 |
+
"normalized": false,
|
1519 |
+
"rstrip": false,
|
1520 |
+
"single_word": false,
|
1521 |
+
"special": true
|
1522 |
+
},
|
1523 |
+
"128190": {
|
1524 |
+
"content": "<|reserved_special_token_182|>",
|
1525 |
+
"lstrip": false,
|
1526 |
+
"normalized": false,
|
1527 |
+
"rstrip": false,
|
1528 |
+
"single_word": false,
|
1529 |
+
"special": true
|
1530 |
+
},
|
1531 |
+
"128191": {
|
1532 |
+
"content": "<|reserved_special_token_183|>",
|
1533 |
+
"lstrip": false,
|
1534 |
+
"normalized": false,
|
1535 |
+
"rstrip": false,
|
1536 |
+
"single_word": false,
|
1537 |
+
"special": true
|
1538 |
+
},
|
1539 |
+
"128192": {
|
1540 |
+
"content": "<|reserved_special_token_184|>",
|
1541 |
+
"lstrip": false,
|
1542 |
+
"normalized": false,
|
1543 |
+
"rstrip": false,
|
1544 |
+
"single_word": false,
|
1545 |
+
"special": true
|
1546 |
+
},
|
1547 |
+
"128193": {
|
1548 |
+
"content": "<|reserved_special_token_185|>",
|
1549 |
+
"lstrip": false,
|
1550 |
+
"normalized": false,
|
1551 |
+
"rstrip": false,
|
1552 |
+
"single_word": false,
|
1553 |
+
"special": true
|
1554 |
+
},
|
1555 |
+
"128194": {
|
1556 |
+
"content": "<|reserved_special_token_186|>",
|
1557 |
+
"lstrip": false,
|
1558 |
+
"normalized": false,
|
1559 |
+
"rstrip": false,
|
1560 |
+
"single_word": false,
|
1561 |
+
"special": true
|
1562 |
+
},
|
1563 |
+
"128195": {
|
1564 |
+
"content": "<|reserved_special_token_187|>",
|
1565 |
+
"lstrip": false,
|
1566 |
+
"normalized": false,
|
1567 |
+
"rstrip": false,
|
1568 |
+
"single_word": false,
|
1569 |
+
"special": true
|
1570 |
+
},
|
1571 |
+
"128196": {
|
1572 |
+
"content": "<|reserved_special_token_188|>",
|
1573 |
+
"lstrip": false,
|
1574 |
+
"normalized": false,
|
1575 |
+
"rstrip": false,
|
1576 |
+
"single_word": false,
|
1577 |
+
"special": true
|
1578 |
+
},
|
1579 |
+
"128197": {
|
1580 |
+
"content": "<|reserved_special_token_189|>",
|
1581 |
+
"lstrip": false,
|
1582 |
+
"normalized": false,
|
1583 |
+
"rstrip": false,
|
1584 |
+
"single_word": false,
|
1585 |
+
"special": true
|
1586 |
+
},
|
1587 |
+
"128198": {
|
1588 |
+
"content": "<|reserved_special_token_190|>",
|
1589 |
+
"lstrip": false,
|
1590 |
+
"normalized": false,
|
1591 |
+
"rstrip": false,
|
1592 |
+
"single_word": false,
|
1593 |
+
"special": true
|
1594 |
+
},
|
1595 |
+
"128199": {
|
1596 |
+
"content": "<|reserved_special_token_191|>",
|
1597 |
+
"lstrip": false,
|
1598 |
+
"normalized": false,
|
1599 |
+
"rstrip": false,
|
1600 |
+
"single_word": false,
|
1601 |
+
"special": true
|
1602 |
+
},
|
1603 |
+
"128200": {
|
1604 |
+
"content": "<|reserved_special_token_192|>",
|
1605 |
+
"lstrip": false,
|
1606 |
+
"normalized": false,
|
1607 |
+
"rstrip": false,
|
1608 |
+
"single_word": false,
|
1609 |
+
"special": true
|
1610 |
+
},
|
1611 |
+
"128201": {
|
1612 |
+
"content": "<|reserved_special_token_193|>",
|
1613 |
+
"lstrip": false,
|
1614 |
+
"normalized": false,
|
1615 |
+
"rstrip": false,
|
1616 |
+
"single_word": false,
|
1617 |
+
"special": true
|
1618 |
+
},
|
1619 |
+
"128202": {
|
1620 |
+
"content": "<|reserved_special_token_194|>",
|
1621 |
+
"lstrip": false,
|
1622 |
+
"normalized": false,
|
1623 |
+
"rstrip": false,
|
1624 |
+
"single_word": false,
|
1625 |
+
"special": true
|
1626 |
+
},
|
1627 |
+
"128203": {
|
1628 |
+
"content": "<|reserved_special_token_195|>",
|
1629 |
+
"lstrip": false,
|
1630 |
+
"normalized": false,
|
1631 |
+
"rstrip": false,
|
1632 |
+
"single_word": false,
|
1633 |
+
"special": true
|
1634 |
+
},
|
1635 |
+
"128204": {
|
1636 |
+
"content": "<|reserved_special_token_196|>",
|
1637 |
+
"lstrip": false,
|
1638 |
+
"normalized": false,
|
1639 |
+
"rstrip": false,
|
1640 |
+
"single_word": false,
|
1641 |
+
"special": true
|
1642 |
+
},
|
1643 |
+
"128205": {
|
1644 |
+
"content": "<|reserved_special_token_197|>",
|
1645 |
+
"lstrip": false,
|
1646 |
+
"normalized": false,
|
1647 |
+
"rstrip": false,
|
1648 |
+
"single_word": false,
|
1649 |
+
"special": true
|
1650 |
+
},
|
1651 |
+
"128206": {
|
1652 |
+
"content": "<|reserved_special_token_198|>",
|
1653 |
+
"lstrip": false,
|
1654 |
+
"normalized": false,
|
1655 |
+
"rstrip": false,
|
1656 |
+
"single_word": false,
|
1657 |
+
"special": true
|
1658 |
+
},
|
1659 |
+
"128207": {
|
1660 |
+
"content": "<|reserved_special_token_199|>",
|
1661 |
+
"lstrip": false,
|
1662 |
+
"normalized": false,
|
1663 |
+
"rstrip": false,
|
1664 |
+
"single_word": false,
|
1665 |
+
"special": true
|
1666 |
+
},
|
1667 |
+
"128208": {
|
1668 |
+
"content": "<|reserved_special_token_200|>",
|
1669 |
+
"lstrip": false,
|
1670 |
+
"normalized": false,
|
1671 |
+
"rstrip": false,
|
1672 |
+
"single_word": false,
|
1673 |
+
"special": true
|
1674 |
+
},
|
1675 |
+
"128209": {
|
1676 |
+
"content": "<|reserved_special_token_201|>",
|
1677 |
+
"lstrip": false,
|
1678 |
+
"normalized": false,
|
1679 |
+
"rstrip": false,
|
1680 |
+
"single_word": false,
|
1681 |
+
"special": true
|
1682 |
+
},
|
1683 |
+
"128210": {
|
1684 |
+
"content": "<|reserved_special_token_202|>",
|
1685 |
+
"lstrip": false,
|
1686 |
+
"normalized": false,
|
1687 |
+
"rstrip": false,
|
1688 |
+
"single_word": false,
|
1689 |
+
"special": true
|
1690 |
+
},
|
1691 |
+
"128211": {
|
1692 |
+
"content": "<|reserved_special_token_203|>",
|
1693 |
+
"lstrip": false,
|
1694 |
+
"normalized": false,
|
1695 |
+
"rstrip": false,
|
1696 |
+
"single_word": false,
|
1697 |
+
"special": true
|
1698 |
+
},
|
1699 |
+
"128212": {
|
1700 |
+
"content": "<|reserved_special_token_204|>",
|
1701 |
+
"lstrip": false,
|
1702 |
+
"normalized": false,
|
1703 |
+
"rstrip": false,
|
1704 |
+
"single_word": false,
|
1705 |
+
"special": true
|
1706 |
+
},
|
1707 |
+
"128213": {
|
1708 |
+
"content": "<|reserved_special_token_205|>",
|
1709 |
+
"lstrip": false,
|
1710 |
+
"normalized": false,
|
1711 |
+
"rstrip": false,
|
1712 |
+
"single_word": false,
|
1713 |
+
"special": true
|
1714 |
+
},
|
1715 |
+
"128214": {
|
1716 |
+
"content": "<|reserved_special_token_206|>",
|
1717 |
+
"lstrip": false,
|
1718 |
+
"normalized": false,
|
1719 |
+
"rstrip": false,
|
1720 |
+
"single_word": false,
|
1721 |
+
"special": true
|
1722 |
+
},
|
1723 |
+
"128215": {
|
1724 |
+
"content": "<|reserved_special_token_207|>",
|
1725 |
+
"lstrip": false,
|
1726 |
+
"normalized": false,
|
1727 |
+
"rstrip": false,
|
1728 |
+
"single_word": false,
|
1729 |
+
"special": true
|
1730 |
+
},
|
1731 |
+
"128216": {
|
1732 |
+
"content": "<|reserved_special_token_208|>",
|
1733 |
+
"lstrip": false,
|
1734 |
+
"normalized": false,
|
1735 |
+
"rstrip": false,
|
1736 |
+
"single_word": false,
|
1737 |
+
"special": true
|
1738 |
+
},
|
1739 |
+
"128217": {
|
1740 |
+
"content": "<|reserved_special_token_209|>",
|
1741 |
+
"lstrip": false,
|
1742 |
+
"normalized": false,
|
1743 |
+
"rstrip": false,
|
1744 |
+
"single_word": false,
|
1745 |
+
"special": true
|
1746 |
+
},
|
1747 |
+
"128218": {
|
1748 |
+
"content": "<|reserved_special_token_210|>",
|
1749 |
+
"lstrip": false,
|
1750 |
+
"normalized": false,
|
1751 |
+
"rstrip": false,
|
1752 |
+
"single_word": false,
|
1753 |
+
"special": true
|
1754 |
+
},
|
1755 |
+
"128219": {
|
1756 |
+
"content": "<|reserved_special_token_211|>",
|
1757 |
+
"lstrip": false,
|
1758 |
+
"normalized": false,
|
1759 |
+
"rstrip": false,
|
1760 |
+
"single_word": false,
|
1761 |
+
"special": true
|
1762 |
+
},
|
1763 |
+
"128220": {
|
1764 |
+
"content": "<|reserved_special_token_212|>",
|
1765 |
+
"lstrip": false,
|
1766 |
+
"normalized": false,
|
1767 |
+
"rstrip": false,
|
1768 |
+
"single_word": false,
|
1769 |
+
"special": true
|
1770 |
+
},
|
1771 |
+
"128221": {
|
1772 |
+
"content": "<|reserved_special_token_213|>",
|
1773 |
+
"lstrip": false,
|
1774 |
+
"normalized": false,
|
1775 |
+
"rstrip": false,
|
1776 |
+
"single_word": false,
|
1777 |
+
"special": true
|
1778 |
+
},
|
1779 |
+
"128222": {
|
1780 |
+
"content": "<|reserved_special_token_214|>",
|
1781 |
+
"lstrip": false,
|
1782 |
+
"normalized": false,
|
1783 |
+
"rstrip": false,
|
1784 |
+
"single_word": false,
|
1785 |
+
"special": true
|
1786 |
+
},
|
1787 |
+
"128223": {
|
1788 |
+
"content": "<|reserved_special_token_215|>",
|
1789 |
+
"lstrip": false,
|
1790 |
+
"normalized": false,
|
1791 |
+
"rstrip": false,
|
1792 |
+
"single_word": false,
|
1793 |
+
"special": true
|
1794 |
+
},
|
1795 |
+
"128224": {
|
1796 |
+
"content": "<|reserved_special_token_216|>",
|
1797 |
+
"lstrip": false,
|
1798 |
+
"normalized": false,
|
1799 |
+
"rstrip": false,
|
1800 |
+
"single_word": false,
|
1801 |
+
"special": true
|
1802 |
+
},
|
1803 |
+
"128225": {
|
1804 |
+
"content": "<|reserved_special_token_217|>",
|
1805 |
+
"lstrip": false,
|
1806 |
+
"normalized": false,
|
1807 |
+
"rstrip": false,
|
1808 |
+
"single_word": false,
|
1809 |
+
"special": true
|
1810 |
+
},
|
1811 |
+
"128226": {
|
1812 |
+
"content": "<|reserved_special_token_218|>",
|
1813 |
+
"lstrip": false,
|
1814 |
+
"normalized": false,
|
1815 |
+
"rstrip": false,
|
1816 |
+
"single_word": false,
|
1817 |
+
"special": true
|
1818 |
+
},
|
1819 |
+
"128227": {
|
1820 |
+
"content": "<|reserved_special_token_219|>",
|
1821 |
+
"lstrip": false,
|
1822 |
+
"normalized": false,
|
1823 |
+
"rstrip": false,
|
1824 |
+
"single_word": false,
|
1825 |
+
"special": true
|
1826 |
+
},
|
1827 |
+
"128228": {
|
1828 |
+
"content": "<|reserved_special_token_220|>",
|
1829 |
+
"lstrip": false,
|
1830 |
+
"normalized": false,
|
1831 |
+
"rstrip": false,
|
1832 |
+
"single_word": false,
|
1833 |
+
"special": true
|
1834 |
+
},
|
1835 |
+
"128229": {
|
1836 |
+
"content": "<|reserved_special_token_221|>",
|
1837 |
+
"lstrip": false,
|
1838 |
+
"normalized": false,
|
1839 |
+
"rstrip": false,
|
1840 |
+
"single_word": false,
|
1841 |
+
"special": true
|
1842 |
+
},
|
1843 |
+
"128230": {
|
1844 |
+
"content": "<|reserved_special_token_222|>",
|
1845 |
+
"lstrip": false,
|
1846 |
+
"normalized": false,
|
1847 |
+
"rstrip": false,
|
1848 |
+
"single_word": false,
|
1849 |
+
"special": true
|
1850 |
+
},
|
1851 |
+
"128231": {
|
1852 |
+
"content": "<|reserved_special_token_223|>",
|
1853 |
+
"lstrip": false,
|
1854 |
+
"normalized": false,
|
1855 |
+
"rstrip": false,
|
1856 |
+
"single_word": false,
|
1857 |
+
"special": true
|
1858 |
+
},
|
1859 |
+
"128232": {
|
1860 |
+
"content": "<|reserved_special_token_224|>",
|
1861 |
+
"lstrip": false,
|
1862 |
+
"normalized": false,
|
1863 |
+
"rstrip": false,
|
1864 |
+
"single_word": false,
|
1865 |
+
"special": true
|
1866 |
+
},
|
1867 |
+
"128233": {
|
1868 |
+
"content": "<|reserved_special_token_225|>",
|
1869 |
+
"lstrip": false,
|
1870 |
+
"normalized": false,
|
1871 |
+
"rstrip": false,
|
1872 |
+
"single_word": false,
|
1873 |
+
"special": true
|
1874 |
+
},
|
1875 |
+
"128234": {
|
1876 |
+
"content": "<|reserved_special_token_226|>",
|
1877 |
+
"lstrip": false,
|
1878 |
+
"normalized": false,
|
1879 |
+
"rstrip": false,
|
1880 |
+
"single_word": false,
|
1881 |
+
"special": true
|
1882 |
+
},
|
1883 |
+
"128235": {
|
1884 |
+
"content": "<|reserved_special_token_227|>",
|
1885 |
+
"lstrip": false,
|
1886 |
+
"normalized": false,
|
1887 |
+
"rstrip": false,
|
1888 |
+
"single_word": false,
|
1889 |
+
"special": true
|
1890 |
+
},
|
1891 |
+
"128236": {
|
1892 |
+
"content": "<|reserved_special_token_228|>",
|
1893 |
+
"lstrip": false,
|
1894 |
+
"normalized": false,
|
1895 |
+
"rstrip": false,
|
1896 |
+
"single_word": false,
|
1897 |
+
"special": true
|
1898 |
+
},
|
1899 |
+
"128237": {
|
1900 |
+
"content": "<|reserved_special_token_229|>",
|
1901 |
+
"lstrip": false,
|
1902 |
+
"normalized": false,
|
1903 |
+
"rstrip": false,
|
1904 |
+
"single_word": false,
|
1905 |
+
"special": true
|
1906 |
+
},
|
1907 |
+
"128238": {
|
1908 |
+
"content": "<|reserved_special_token_230|>",
|
1909 |
+
"lstrip": false,
|
1910 |
+
"normalized": false,
|
1911 |
+
"rstrip": false,
|
1912 |
+
"single_word": false,
|
1913 |
+
"special": true
|
1914 |
+
},
|
1915 |
+
"128239": {
|
1916 |
+
"content": "<|reserved_special_token_231|>",
|
1917 |
+
"lstrip": false,
|
1918 |
+
"normalized": false,
|
1919 |
+
"rstrip": false,
|
1920 |
+
"single_word": false,
|
1921 |
+
"special": true
|
1922 |
+
},
|
1923 |
+
"128240": {
|
1924 |
+
"content": "<|reserved_special_token_232|>",
|
1925 |
+
"lstrip": false,
|
1926 |
+
"normalized": false,
|
1927 |
+
"rstrip": false,
|
1928 |
+
"single_word": false,
|
1929 |
+
"special": true
|
1930 |
+
},
|
1931 |
+
"128241": {
|
1932 |
+
"content": "<|reserved_special_token_233|>",
|
1933 |
+
"lstrip": false,
|
1934 |
+
"normalized": false,
|
1935 |
+
"rstrip": false,
|
1936 |
+
"single_word": false,
|
1937 |
+
"special": true
|
1938 |
+
},
|
1939 |
+
"128242": {
|
1940 |
+
"content": "<|reserved_special_token_234|>",
|
1941 |
+
"lstrip": false,
|
1942 |
+
"normalized": false,
|
1943 |
+
"rstrip": false,
|
1944 |
+
"single_word": false,
|
1945 |
+
"special": true
|
1946 |
+
},
|
1947 |
+
"128243": {
|
1948 |
+
"content": "<|reserved_special_token_235|>",
|
1949 |
+
"lstrip": false,
|
1950 |
+
"normalized": false,
|
1951 |
+
"rstrip": false,
|
1952 |
+
"single_word": false,
|
1953 |
+
"special": true
|
1954 |
+
},
|
1955 |
+
"128244": {
|
1956 |
+
"content": "<|reserved_special_token_236|>",
|
1957 |
+
"lstrip": false,
|
1958 |
+
"normalized": false,
|
1959 |
+
"rstrip": false,
|
1960 |
+
"single_word": false,
|
1961 |
+
"special": true
|
1962 |
+
},
|
1963 |
+
"128245": {
|
1964 |
+
"content": "<|reserved_special_token_237|>",
|
1965 |
+
"lstrip": false,
|
1966 |
+
"normalized": false,
|
1967 |
+
"rstrip": false,
|
1968 |
+
"single_word": false,
|
1969 |
+
"special": true
|
1970 |
+
},
|
1971 |
+
"128246": {
|
1972 |
+
"content": "<|reserved_special_token_238|>",
|
1973 |
+
"lstrip": false,
|
1974 |
+
"normalized": false,
|
1975 |
+
"rstrip": false,
|
1976 |
+
"single_word": false,
|
1977 |
+
"special": true
|
1978 |
+
},
|
1979 |
+
"128247": {
|
1980 |
+
"content": "<|reserved_special_token_239|>",
|
1981 |
+
"lstrip": false,
|
1982 |
+
"normalized": false,
|
1983 |
+
"rstrip": false,
|
1984 |
+
"single_word": false,
|
1985 |
+
"special": true
|
1986 |
+
},
|
1987 |
+
"128248": {
|
1988 |
+
"content": "<|reserved_special_token_240|>",
|
1989 |
+
"lstrip": false,
|
1990 |
+
"normalized": false,
|
1991 |
+
"rstrip": false,
|
1992 |
+
"single_word": false,
|
1993 |
+
"special": true
|
1994 |
+
},
|
1995 |
+
"128249": {
|
1996 |
+
"content": "<|reserved_special_token_241|>",
|
1997 |
+
"lstrip": false,
|
1998 |
+
"normalized": false,
|
1999 |
+
"rstrip": false,
|
2000 |
+
"single_word": false,
|
2001 |
+
"special": true
|
2002 |
+
},
|
2003 |
+
"128250": {
|
2004 |
+
"content": "<|reserved_special_token_242|>",
|
2005 |
+
"lstrip": false,
|
2006 |
+
"normalized": false,
|
2007 |
+
"rstrip": false,
|
2008 |
+
"single_word": false,
|
2009 |
+
"special": true
|
2010 |
+
},
|
2011 |
+
"128251": {
|
2012 |
+
"content": "<|reserved_special_token_243|>",
|
2013 |
+
"lstrip": false,
|
2014 |
+
"normalized": false,
|
2015 |
+
"rstrip": false,
|
2016 |
+
"single_word": false,
|
2017 |
+
"special": true
|
2018 |
+
},
|
2019 |
+
"128252": {
|
2020 |
+
"content": "<|reserved_special_token_244|>",
|
2021 |
+
"lstrip": false,
|
2022 |
+
"normalized": false,
|
2023 |
+
"rstrip": false,
|
2024 |
+
"single_word": false,
|
2025 |
+
"special": true
|
2026 |
+
},
|
2027 |
+
"128253": {
|
2028 |
+
"content": "<|reserved_special_token_245|>",
|
2029 |
+
"lstrip": false,
|
2030 |
+
"normalized": false,
|
2031 |
+
"rstrip": false,
|
2032 |
+
"single_word": false,
|
2033 |
+
"special": true
|
2034 |
+
},
|
2035 |
+
"128254": {
|
2036 |
+
"content": "<|reserved_special_token_246|>",
|
2037 |
+
"lstrip": false,
|
2038 |
+
"normalized": false,
|
2039 |
+
"rstrip": false,
|
2040 |
+
"single_word": false,
|
2041 |
+
"special": true
|
2042 |
+
},
|
2043 |
+
"128255": {
|
2044 |
+
"content": "<|reserved_special_token_247|>",
|
2045 |
+
"lstrip": false,
|
2046 |
+
"normalized": false,
|
2047 |
+
"rstrip": false,
|
2048 |
+
"single_word": false,
|
2049 |
+
"special": true
|
2050 |
+
}
|
2051 |
+
},
|
2052 |
+
"bos_token": "<|begin_of_text|>",
|
2053 |
+
"chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
|
2054 |
+
"clean_up_tokenization_spaces": true,
|
2055 |
+
"eos_token": "<|eot_id|>",
|
2056 |
+
"extra_special_tokens": {},
|
2057 |
+
"model_input_names": [
|
2058 |
+
"input_ids",
|
2059 |
+
"attention_mask"
|
2060 |
+
],
|
2061 |
+
"model_max_length": 131072,
|
2062 |
+
"pad_token": "<|eot_id|>",
|
2063 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
2064 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,2441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 19.954545454545453,
|
5 |
+
"eval_steps": 5,
|
6 |
+
"global_step": 280,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.06818181818181818,
|
13 |
+
"grad_norm": 0.06971553261798506,
|
14 |
+
"learning_rate": 0.0003,
|
15 |
+
"loss": 2.1067,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13636363636363635,
|
20 |
+
"grad_norm": 0.07054487488667167,
|
21 |
+
"learning_rate": 0.0006,
|
22 |
+
"loss": 2.1186,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.20454545454545456,
|
27 |
+
"grad_norm": 0.07239115938608504,
|
28 |
+
"learning_rate": 0.000597841726618705,
|
29 |
+
"loss": 2.0828,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.2727272727272727,
|
34 |
+
"grad_norm": 0.06478292935968949,
|
35 |
+
"learning_rate": 0.00059568345323741,
|
36 |
+
"loss": 1.9634,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.3409090909090909,
|
41 |
+
"grad_norm": 0.05088182324166269,
|
42 |
+
"learning_rate": 0.000593525179856115,
|
43 |
+
"loss": 1.8989,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.3409090909090909,
|
48 |
+
"eval_loss": 1.8212867975234985,
|
49 |
+
"eval_runtime": 8.1048,
|
50 |
+
"eval_samples_per_second": 42.567,
|
51 |
+
"eval_steps_per_second": 1.357,
|
52 |
+
"step": 5
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.4090909090909091,
|
56 |
+
"grad_norm": 0.05446360379412776,
|
57 |
+
"learning_rate": 0.0005913669064748201,
|
58 |
+
"loss": 1.8229,
|
59 |
+
"step": 6
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.4772727272727273,
|
63 |
+
"grad_norm": 0.0653990436771125,
|
64 |
+
"learning_rate": 0.0005892086330935251,
|
65 |
+
"loss": 1.8079,
|
66 |
+
"step": 7
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.5454545454545454,
|
70 |
+
"grad_norm": 0.0633781852841051,
|
71 |
+
"learning_rate": 0.0005870503597122301,
|
72 |
+
"loss": 1.7028,
|
73 |
+
"step": 8
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.6136363636363636,
|
77 |
+
"grad_norm": 0.0618320778675903,
|
78 |
+
"learning_rate": 0.0005848920863309352,
|
79 |
+
"loss": 1.6752,
|
80 |
+
"step": 9
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.6818181818181818,
|
84 |
+
"grad_norm": 0.054095086095025016,
|
85 |
+
"learning_rate": 0.0005827338129496402,
|
86 |
+
"loss": 1.6238,
|
87 |
+
"step": 10
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.6818181818181818,
|
91 |
+
"eval_loss": 1.5410690307617188,
|
92 |
+
"eval_runtime": 8.1279,
|
93 |
+
"eval_samples_per_second": 42.446,
|
94 |
+
"eval_steps_per_second": 1.353,
|
95 |
+
"step": 10
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"epoch": 0.75,
|
99 |
+
"grad_norm": 0.054211614637456246,
|
100 |
+
"learning_rate": 0.0005805755395683452,
|
101 |
+
"loss": 1.5235,
|
102 |
+
"step": 11
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"epoch": 0.8181818181818182,
|
106 |
+
"grad_norm": 0.05371774271181906,
|
107 |
+
"learning_rate": 0.0005784172661870503,
|
108 |
+
"loss": 1.5108,
|
109 |
+
"step": 12
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 0.8863636363636364,
|
113 |
+
"grad_norm": 0.044029535972342784,
|
114 |
+
"learning_rate": 0.0005762589928057553,
|
115 |
+
"loss": 1.4466,
|
116 |
+
"step": 13
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.9545454545454546,
|
120 |
+
"grad_norm": 0.04474901625615465,
|
121 |
+
"learning_rate": 0.0005741007194244605,
|
122 |
+
"loss": 1.3837,
|
123 |
+
"step": 14
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 1.0681818181818181,
|
127 |
+
"grad_norm": 0.06304541222353484,
|
128 |
+
"learning_rate": 0.0005719424460431654,
|
129 |
+
"loss": 2.7885,
|
130 |
+
"step": 15
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 1.0681818181818181,
|
134 |
+
"eval_loss": 1.3567187786102295,
|
135 |
+
"eval_runtime": 8.1693,
|
136 |
+
"eval_samples_per_second": 42.231,
|
137 |
+
"eval_steps_per_second": 1.346,
|
138 |
+
"step": 15
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"epoch": 1.1363636363636362,
|
142 |
+
"grad_norm": 0.0839029152820855,
|
143 |
+
"learning_rate": 0.0005697841726618704,
|
144 |
+
"loss": 1.3614,
|
145 |
+
"step": 16
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"epoch": 1.2045454545454546,
|
149 |
+
"grad_norm": 0.030018736911818295,
|
150 |
+
"learning_rate": 0.0005676258992805754,
|
151 |
+
"loss": 1.3191,
|
152 |
+
"step": 17
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 1.2727272727272727,
|
156 |
+
"grad_norm": 0.02836667103794244,
|
157 |
+
"learning_rate": 0.0005654676258992806,
|
158 |
+
"loss": 1.3101,
|
159 |
+
"step": 18
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.3409090909090908,
|
163 |
+
"grad_norm": 0.028180605086143264,
|
164 |
+
"learning_rate": 0.0005633093525179856,
|
165 |
+
"loss": 1.2951,
|
166 |
+
"step": 19
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4090909090909092,
|
170 |
+
"grad_norm": 0.027132258673613303,
|
171 |
+
"learning_rate": 0.0005611510791366905,
|
172 |
+
"loss": 1.2816,
|
173 |
+
"step": 20
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"epoch": 1.4090909090909092,
|
177 |
+
"eval_loss": 1.2828738689422607,
|
178 |
+
"eval_runtime": 8.1065,
|
179 |
+
"eval_samples_per_second": 42.559,
|
180 |
+
"eval_steps_per_second": 1.357,
|
181 |
+
"step": 20
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.4772727272727273,
|
185 |
+
"grad_norm": 0.02748637686507973,
|
186 |
+
"learning_rate": 0.0005589928057553956,
|
187 |
+
"loss": 1.2747,
|
188 |
+
"step": 21
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 1.5454545454545454,
|
192 |
+
"grad_norm": 0.025634408979214672,
|
193 |
+
"learning_rate": 0.0005568345323741007,
|
194 |
+
"loss": 1.2603,
|
195 |
+
"step": 22
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 1.6136363636363638,
|
199 |
+
"grad_norm": 0.025516551832741825,
|
200 |
+
"learning_rate": 0.0005546762589928058,
|
201 |
+
"loss": 1.2734,
|
202 |
+
"step": 23
|
203 |
+
},
|
204 |
+
{
|
205 |
+
"epoch": 1.6818181818181817,
|
206 |
+
"grad_norm": 0.02846315443228407,
|
207 |
+
"learning_rate": 0.0005525179856115108,
|
208 |
+
"loss": 1.2151,
|
209 |
+
"step": 24
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 1.75,
|
213 |
+
"grad_norm": 0.026146320923494455,
|
214 |
+
"learning_rate": 0.0005503597122302157,
|
215 |
+
"loss": 1.2324,
|
216 |
+
"step": 25
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"epoch": 1.75,
|
220 |
+
"eval_loss": 1.2205581665039062,
|
221 |
+
"eval_runtime": 8.1259,
|
222 |
+
"eval_samples_per_second": 42.457,
|
223 |
+
"eval_steps_per_second": 1.354,
|
224 |
+
"step": 25
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 1.8181818181818183,
|
228 |
+
"grad_norm": 0.02628468954804409,
|
229 |
+
"learning_rate": 0.0005482014388489209,
|
230 |
+
"loss": 1.2115,
|
231 |
+
"step": 26
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 1.8863636363636362,
|
235 |
+
"grad_norm": 0.029369830914917405,
|
236 |
+
"learning_rate": 0.0005460431654676259,
|
237 |
+
"loss": 1.1994,
|
238 |
+
"step": 27
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"epoch": 1.9545454545454546,
|
242 |
+
"grad_norm": 0.030174694887548183,
|
243 |
+
"learning_rate": 0.0005438848920863309,
|
244 |
+
"loss": 1.1886,
|
245 |
+
"step": 28
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"epoch": 2.0681818181818183,
|
249 |
+
"grad_norm": 0.050163447867833874,
|
250 |
+
"learning_rate": 0.000541726618705036,
|
251 |
+
"loss": 2.3343,
|
252 |
+
"step": 29
|
253 |
+
},
|
254 |
+
{
|
255 |
+
"epoch": 2.1363636363636362,
|
256 |
+
"grad_norm": 0.04331575438629777,
|
257 |
+
"learning_rate": 0.0005395683453237409,
|
258 |
+
"loss": 1.1393,
|
259 |
+
"step": 30
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"epoch": 2.1363636363636362,
|
263 |
+
"eval_loss": 1.1580253839492798,
|
264 |
+
"eval_runtime": 8.1172,
|
265 |
+
"eval_samples_per_second": 42.502,
|
266 |
+
"eval_steps_per_second": 1.355,
|
267 |
+
"step": 30
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 2.2045454545454546,
|
271 |
+
"grad_norm": 0.0426092536527915,
|
272 |
+
"learning_rate": 0.000537410071942446,
|
273 |
+
"loss": 1.1413,
|
274 |
+
"step": 31
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"epoch": 2.2727272727272725,
|
278 |
+
"grad_norm": 0.025590491651023384,
|
279 |
+
"learning_rate": 0.0005352517985611511,
|
280 |
+
"loss": 1.1275,
|
281 |
+
"step": 32
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 2.340909090909091,
|
285 |
+
"grad_norm": 0.025778388533764112,
|
286 |
+
"learning_rate": 0.0005330935251798561,
|
287 |
+
"loss": 1.0986,
|
288 |
+
"step": 33
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"epoch": 2.409090909090909,
|
292 |
+
"grad_norm": 0.026776183957311392,
|
293 |
+
"learning_rate": 0.0005309352517985611,
|
294 |
+
"loss": 1.1139,
|
295 |
+
"step": 34
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"epoch": 2.4772727272727275,
|
299 |
+
"grad_norm": 0.025330854666251474,
|
300 |
+
"learning_rate": 0.0005287769784172662,
|
301 |
+
"loss": 1.1022,
|
302 |
+
"step": 35
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 2.4772727272727275,
|
306 |
+
"eval_loss": 1.1153113842010498,
|
307 |
+
"eval_runtime": 8.1365,
|
308 |
+
"eval_samples_per_second": 42.402,
|
309 |
+
"eval_steps_per_second": 1.352,
|
310 |
+
"step": 35
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 2.5454545454545454,
|
314 |
+
"grad_norm": 0.02349033436198544,
|
315 |
+
"learning_rate": 0.0005266187050359712,
|
316 |
+
"loss": 1.0953,
|
317 |
+
"step": 36
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 2.6136363636363638,
|
321 |
+
"grad_norm": 0.02473023480651901,
|
322 |
+
"learning_rate": 0.0005244604316546762,
|
323 |
+
"loss": 1.0936,
|
324 |
+
"step": 37
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.6818181818181817,
|
328 |
+
"grad_norm": 0.02539784236933349,
|
329 |
+
"learning_rate": 0.0005223021582733813,
|
330 |
+
"loss": 1.1154,
|
331 |
+
"step": 38
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.75,
|
335 |
+
"grad_norm": 0.03270958845597137,
|
336 |
+
"learning_rate": 0.0005201438848920863,
|
337 |
+
"loss": 1.085,
|
338 |
+
"step": 39
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 2.8181818181818183,
|
342 |
+
"grad_norm": 0.024001559185982103,
|
343 |
+
"learning_rate": 0.0005179856115107913,
|
344 |
+
"loss": 1.0802,
|
345 |
+
"step": 40
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 2.8181818181818183,
|
349 |
+
"eval_loss": 1.0837695598602295,
|
350 |
+
"eval_runtime": 8.1029,
|
351 |
+
"eval_samples_per_second": 42.578,
|
352 |
+
"eval_steps_per_second": 1.358,
|
353 |
+
"step": 40
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 2.8863636363636362,
|
357 |
+
"grad_norm": 0.024688672265830155,
|
358 |
+
"learning_rate": 0.0005158273381294964,
|
359 |
+
"loss": 1.0669,
|
360 |
+
"step": 41
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 2.9545454545454546,
|
364 |
+
"grad_norm": 0.022920592283827784,
|
365 |
+
"learning_rate": 0.0005136690647482014,
|
366 |
+
"loss": 1.0652,
|
367 |
+
"step": 42
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 3.0681818181818183,
|
371 |
+
"grad_norm": 0.028505892101560536,
|
372 |
+
"learning_rate": 0.0005115107913669064,
|
373 |
+
"loss": 2.1208,
|
374 |
+
"step": 43
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 3.1363636363636362,
|
378 |
+
"grad_norm": 0.02840907000682803,
|
379 |
+
"learning_rate": 0.0005093525179856115,
|
380 |
+
"loss": 1.0327,
|
381 |
+
"step": 44
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 3.2045454545454546,
|
385 |
+
"grad_norm": 0.027415960398794736,
|
386 |
+
"learning_rate": 0.0005071942446043165,
|
387 |
+
"loss": 1.0442,
|
388 |
+
"step": 45
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 3.2045454545454546,
|
392 |
+
"eval_loss": 1.0489835739135742,
|
393 |
+
"eval_runtime": 8.0834,
|
394 |
+
"eval_samples_per_second": 42.68,
|
395 |
+
"eval_steps_per_second": 1.361,
|
396 |
+
"step": 45
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"epoch": 3.2727272727272725,
|
400 |
+
"grad_norm": 0.03411917963766262,
|
401 |
+
"learning_rate": 0.0005050359712230215,
|
402 |
+
"loss": 1.0275,
|
403 |
+
"step": 46
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"epoch": 3.340909090909091,
|
407 |
+
"grad_norm": 0.025619102153034114,
|
408 |
+
"learning_rate": 0.0005028776978417266,
|
409 |
+
"loss": 1.0435,
|
410 |
+
"step": 47
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 3.409090909090909,
|
414 |
+
"grad_norm": 0.02766138645646793,
|
415 |
+
"learning_rate": 0.0005007194244604316,
|
416 |
+
"loss": 1.0278,
|
417 |
+
"step": 48
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 3.4772727272727275,
|
421 |
+
"grad_norm": 0.030469995112099735,
|
422 |
+
"learning_rate": 0.0004985611510791366,
|
423 |
+
"loss": 1.0389,
|
424 |
+
"step": 49
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"epoch": 3.5454545454545454,
|
428 |
+
"grad_norm": 0.03978097040774645,
|
429 |
+
"learning_rate": 0.0004964028776978417,
|
430 |
+
"loss": 1.0221,
|
431 |
+
"step": 50
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 3.5454545454545454,
|
435 |
+
"eval_loss": 1.020704984664917,
|
436 |
+
"eval_runtime": 8.1356,
|
437 |
+
"eval_samples_per_second": 42.406,
|
438 |
+
"eval_steps_per_second": 1.352,
|
439 |
+
"step": 50
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"epoch": 3.6136363636363638,
|
443 |
+
"grad_norm": 0.04292173500407886,
|
444 |
+
"learning_rate": 0.0004942446043165467,
|
445 |
+
"loss": 0.9846,
|
446 |
+
"step": 51
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 3.6818181818181817,
|
450 |
+
"grad_norm": 0.024479080873563385,
|
451 |
+
"learning_rate": 0.0004920863309352517,
|
452 |
+
"loss": 0.9953,
|
453 |
+
"step": 52
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 3.75,
|
457 |
+
"grad_norm": 0.043402172871929386,
|
458 |
+
"learning_rate": 0.0004899280575539568,
|
459 |
+
"loss": 0.9925,
|
460 |
+
"step": 53
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"epoch": 3.8181818181818183,
|
464 |
+
"grad_norm": 0.0382746750242847,
|
465 |
+
"learning_rate": 0.00048776978417266185,
|
466 |
+
"loss": 1.0087,
|
467 |
+
"step": 54
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 3.8863636363636362,
|
471 |
+
"grad_norm": 0.024774882787080774,
|
472 |
+
"learning_rate": 0.00048561151079136683,
|
473 |
+
"loss": 0.9626,
|
474 |
+
"step": 55
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 3.8863636363636362,
|
478 |
+
"eval_loss": 0.9932628870010376,
|
479 |
+
"eval_runtime": 8.1195,
|
480 |
+
"eval_samples_per_second": 42.49,
|
481 |
+
"eval_steps_per_second": 1.355,
|
482 |
+
"step": 55
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 3.9545454545454546,
|
486 |
+
"grad_norm": 0.02798449401137842,
|
487 |
+
"learning_rate": 0.0004834532374100719,
|
488 |
+
"loss": 0.9991,
|
489 |
+
"step": 56
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.068181818181818,
|
493 |
+
"grad_norm": 0.05272117376059711,
|
494 |
+
"learning_rate": 0.00048129496402877695,
|
495 |
+
"loss": 1.9349,
|
496 |
+
"step": 57
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.136363636363637,
|
500 |
+
"grad_norm": 0.04621071896910826,
|
501 |
+
"learning_rate": 0.000479136690647482,
|
502 |
+
"loss": 0.9639,
|
503 |
+
"step": 58
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"epoch": 4.204545454545454,
|
507 |
+
"grad_norm": 0.02881948630756961,
|
508 |
+
"learning_rate": 0.000476978417266187,
|
509 |
+
"loss": 0.9668,
|
510 |
+
"step": 59
|
511 |
+
},
|
512 |
+
{
|
513 |
+
"epoch": 4.2727272727272725,
|
514 |
+
"grad_norm": 0.05042292328026134,
|
515 |
+
"learning_rate": 0.00047482014388489205,
|
516 |
+
"loss": 0.937,
|
517 |
+
"step": 60
|
518 |
+
},
|
519 |
+
{
|
520 |
+
"epoch": 4.2727272727272725,
|
521 |
+
"eval_loss": 0.9676915407180786,
|
522 |
+
"eval_runtime": 8.1609,
|
523 |
+
"eval_samples_per_second": 42.275,
|
524 |
+
"eval_steps_per_second": 1.348,
|
525 |
+
"step": 60
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 4.340909090909091,
|
529 |
+
"grad_norm": 0.058059582950870894,
|
530 |
+
"learning_rate": 0.0004726618705035971,
|
531 |
+
"loss": 0.9577,
|
532 |
+
"step": 61
|
533 |
+
},
|
534 |
+
{
|
535 |
+
"epoch": 4.409090909090909,
|
536 |
+
"grad_norm": 0.034423399248186874,
|
537 |
+
"learning_rate": 0.0004705035971223021,
|
538 |
+
"loss": 0.9405,
|
539 |
+
"step": 62
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"epoch": 4.4772727272727275,
|
543 |
+
"grad_norm": 0.03653583924025194,
|
544 |
+
"learning_rate": 0.00046834532374100715,
|
545 |
+
"loss": 0.9391,
|
546 |
+
"step": 63
|
547 |
+
},
|
548 |
+
{
|
549 |
+
"epoch": 4.545454545454545,
|
550 |
+
"grad_norm": 0.0572311226854069,
|
551 |
+
"learning_rate": 0.00046618705035971224,
|
552 |
+
"loss": 0.919,
|
553 |
+
"step": 64
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"epoch": 4.613636363636363,
|
557 |
+
"grad_norm": 0.03839686351048556,
|
558 |
+
"learning_rate": 0.0004640287769784172,
|
559 |
+
"loss": 0.9106,
|
560 |
+
"step": 65
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 4.613636363636363,
|
564 |
+
"eval_loss": 0.939763605594635,
|
565 |
+
"eval_runtime": 8.1605,
|
566 |
+
"eval_samples_per_second": 42.277,
|
567 |
+
"eval_steps_per_second": 1.348,
|
568 |
+
"step": 65
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"epoch": 4.681818181818182,
|
572 |
+
"grad_norm": 0.03544299577987621,
|
573 |
+
"learning_rate": 0.00046187050359712225,
|
574 |
+
"loss": 0.9178,
|
575 |
+
"step": 66
|
576 |
+
},
|
577 |
+
{
|
578 |
+
"epoch": 4.75,
|
579 |
+
"grad_norm": 0.059928619722737636,
|
580 |
+
"learning_rate": 0.0004597122302158273,
|
581 |
+
"loss": 0.8964,
|
582 |
+
"step": 67
|
583 |
+
},
|
584 |
+
{
|
585 |
+
"epoch": 4.818181818181818,
|
586 |
+
"grad_norm": 0.04815258296427184,
|
587 |
+
"learning_rate": 0.00045755395683453237,
|
588 |
+
"loss": 0.8976,
|
589 |
+
"step": 68
|
590 |
+
},
|
591 |
+
{
|
592 |
+
"epoch": 4.886363636363637,
|
593 |
+
"grad_norm": 0.039425536307977634,
|
594 |
+
"learning_rate": 0.0004553956834532374,
|
595 |
+
"loss": 0.8867,
|
596 |
+
"step": 69
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 4.954545454545455,
|
600 |
+
"grad_norm": 0.06090505739784628,
|
601 |
+
"learning_rate": 0.0004532374100719424,
|
602 |
+
"loss": 0.9128,
|
603 |
+
"step": 70
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 4.954545454545455,
|
607 |
+
"eval_loss": 0.9127504229545593,
|
608 |
+
"eval_runtime": 8.1407,
|
609 |
+
"eval_samples_per_second": 42.38,
|
610 |
+
"eval_steps_per_second": 1.351,
|
611 |
+
"step": 70
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 5.068181818181818,
|
615 |
+
"grad_norm": 0.09240617833527989,
|
616 |
+
"learning_rate": 0.0004510791366906474,
|
617 |
+
"loss": 1.7677,
|
618 |
+
"step": 71
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 5.136363636363637,
|
622 |
+
"grad_norm": 0.09264951996871268,
|
623 |
+
"learning_rate": 0.0004489208633093525,
|
624 |
+
"loss": 0.8669,
|
625 |
+
"step": 72
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 5.204545454545454,
|
629 |
+
"grad_norm": 0.0565592169550709,
|
630 |
+
"learning_rate": 0.00044676258992805754,
|
631 |
+
"loss": 0.8391,
|
632 |
+
"step": 73
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 5.2727272727272725,
|
636 |
+
"grad_norm": 0.10713231220086705,
|
637 |
+
"learning_rate": 0.0004446043165467625,
|
638 |
+
"loss": 0.865,
|
639 |
+
"step": 74
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.340909090909091,
|
643 |
+
"grad_norm": 0.07075857360807376,
|
644 |
+
"learning_rate": 0.00044244604316546755,
|
645 |
+
"loss": 0.8749,
|
646 |
+
"step": 75
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.340909090909091,
|
650 |
+
"eval_loss": 0.8900865912437439,
|
651 |
+
"eval_runtime": 8.1006,
|
652 |
+
"eval_samples_per_second": 42.589,
|
653 |
+
"eval_steps_per_second": 1.358,
|
654 |
+
"step": 75
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.409090909090909,
|
658 |
+
"grad_norm": 0.07139206154463207,
|
659 |
+
"learning_rate": 0.00044028776978417264,
|
660 |
+
"loss": 0.8061,
|
661 |
+
"step": 76
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.4772727272727275,
|
665 |
+
"grad_norm": 0.05295581740446492,
|
666 |
+
"learning_rate": 0.00043812949640287767,
|
667 |
+
"loss": 0.836,
|
668 |
+
"step": 77
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 5.545454545454545,
|
672 |
+
"grad_norm": 0.10795718414504424,
|
673 |
+
"learning_rate": 0.0004359712230215827,
|
674 |
+
"loss": 0.8542,
|
675 |
+
"step": 78
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 5.613636363636363,
|
679 |
+
"grad_norm": 0.07581832589970966,
|
680 |
+
"learning_rate": 0.0004338129496402877,
|
681 |
+
"loss": 0.8359,
|
682 |
+
"step": 79
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 5.681818181818182,
|
686 |
+
"grad_norm": 0.08899171020239695,
|
687 |
+
"learning_rate": 0.00043165467625899277,
|
688 |
+
"loss": 0.8313,
|
689 |
+
"step": 80
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 5.681818181818182,
|
693 |
+
"eval_loss": 0.8642853498458862,
|
694 |
+
"eval_runtime": 8.117,
|
695 |
+
"eval_samples_per_second": 42.503,
|
696 |
+
"eval_steps_per_second": 1.355,
|
697 |
+
"step": 80
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"epoch": 5.75,
|
701 |
+
"grad_norm": 0.04875846287931849,
|
702 |
+
"learning_rate": 0.0004294964028776978,
|
703 |
+
"loss": 0.8442,
|
704 |
+
"step": 81
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 5.818181818181818,
|
708 |
+
"grad_norm": 0.10936679106566523,
|
709 |
+
"learning_rate": 0.00042733812949640284,
|
710 |
+
"loss": 0.8474,
|
711 |
+
"step": 82
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 5.886363636363637,
|
715 |
+
"grad_norm": 0.05087359705004991,
|
716 |
+
"learning_rate": 0.00042517985611510787,
|
717 |
+
"loss": 0.8212,
|
718 |
+
"step": 83
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"epoch": 5.954545454545455,
|
722 |
+
"grad_norm": 0.08921548210103483,
|
723 |
+
"learning_rate": 0.0004230215827338129,
|
724 |
+
"loss": 0.8194,
|
725 |
+
"step": 84
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"epoch": 6.068181818181818,
|
729 |
+
"grad_norm": 0.14897814209277863,
|
730 |
+
"learning_rate": 0.00042086330935251794,
|
731 |
+
"loss": 1.6402,
|
732 |
+
"step": 85
|
733 |
+
},
|
734 |
+
{
|
735 |
+
"epoch": 6.068181818181818,
|
736 |
+
"eval_loss": 0.8333667516708374,
|
737 |
+
"eval_runtime": 8.2096,
|
738 |
+
"eval_samples_per_second": 42.024,
|
739 |
+
"eval_steps_per_second": 1.34,
|
740 |
+
"step": 85
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 6.136363636363637,
|
744 |
+
"grad_norm": 0.05711359949253307,
|
745 |
+
"learning_rate": 0.00041870503597122297,
|
746 |
+
"loss": 0.7788,
|
747 |
+
"step": 86
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 6.204545454545454,
|
751 |
+
"grad_norm": 0.08870550671742361,
|
752 |
+
"learning_rate": 0.000416546762589928,
|
753 |
+
"loss": 0.7811,
|
754 |
+
"step": 87
|
755 |
+
},
|
756 |
+
{
|
757 |
+
"epoch": 6.2727272727272725,
|
758 |
+
"grad_norm": 0.0708608913448977,
|
759 |
+
"learning_rate": 0.0004143884892086331,
|
760 |
+
"loss": 0.7167,
|
761 |
+
"step": 88
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"epoch": 6.340909090909091,
|
765 |
+
"grad_norm": 0.06299886792487264,
|
766 |
+
"learning_rate": 0.00041223021582733807,
|
767 |
+
"loss": 0.7708,
|
768 |
+
"step": 89
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"epoch": 6.409090909090909,
|
772 |
+
"grad_norm": 0.06972816062126294,
|
773 |
+
"learning_rate": 0.0004100719424460431,
|
774 |
+
"loss": 0.7842,
|
775 |
+
"step": 90
|
776 |
+
},
|
777 |
+
{
|
778 |
+
"epoch": 6.409090909090909,
|
779 |
+
"eval_loss": 0.8082873225212097,
|
780 |
+
"eval_runtime": 8.1163,
|
781 |
+
"eval_samples_per_second": 42.507,
|
782 |
+
"eval_steps_per_second": 1.355,
|
783 |
+
"step": 90
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 6.4772727272727275,
|
787 |
+
"grad_norm": 0.05524626680894908,
|
788 |
+
"learning_rate": 0.00040791366906474814,
|
789 |
+
"loss": 0.7815,
|
790 |
+
"step": 91
|
791 |
+
},
|
792 |
+
{
|
793 |
+
"epoch": 6.545454545454545,
|
794 |
+
"grad_norm": 0.07428773387220912,
|
795 |
+
"learning_rate": 0.00040575539568345323,
|
796 |
+
"loss": 0.7402,
|
797 |
+
"step": 92
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 6.613636363636363,
|
801 |
+
"grad_norm": 0.05244479270875927,
|
802 |
+
"learning_rate": 0.00040359712230215826,
|
803 |
+
"loss": 0.7483,
|
804 |
+
"step": 93
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 6.681818181818182,
|
808 |
+
"grad_norm": 0.08505394433312566,
|
809 |
+
"learning_rate": 0.00040143884892086324,
|
810 |
+
"loss": 0.7435,
|
811 |
+
"step": 94
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 6.75,
|
815 |
+
"grad_norm": 0.06345925331753834,
|
816 |
+
"learning_rate": 0.0003992805755395683,
|
817 |
+
"loss": 0.7443,
|
818 |
+
"step": 95
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 6.75,
|
822 |
+
"eval_loss": 0.7839414477348328,
|
823 |
+
"eval_runtime": 8.1236,
|
824 |
+
"eval_samples_per_second": 42.469,
|
825 |
+
"eval_steps_per_second": 1.354,
|
826 |
+
"step": 95
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 6.818181818181818,
|
830 |
+
"grad_norm": 0.059125909015250014,
|
831 |
+
"learning_rate": 0.00039712230215827336,
|
832 |
+
"loss": 0.7295,
|
833 |
+
"step": 96
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"epoch": 6.886363636363637,
|
837 |
+
"grad_norm": 0.06446395148843838,
|
838 |
+
"learning_rate": 0.0003949640287769784,
|
839 |
+
"loss": 0.7645,
|
840 |
+
"step": 97
|
841 |
+
},
|
842 |
+
{
|
843 |
+
"epoch": 6.954545454545455,
|
844 |
+
"grad_norm": 0.05290129718796027,
|
845 |
+
"learning_rate": 0.00039280575539568343,
|
846 |
+
"loss": 0.7516,
|
847 |
+
"step": 98
|
848 |
+
},
|
849 |
+
{
|
850 |
+
"epoch": 7.068181818181818,
|
851 |
+
"grad_norm": 0.08678848404001936,
|
852 |
+
"learning_rate": 0.0003906474820143884,
|
853 |
+
"loss": 1.466,
|
854 |
+
"step": 99
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 7.136363636363637,
|
858 |
+
"grad_norm": 0.05806663642702444,
|
859 |
+
"learning_rate": 0.0003884892086330935,
|
860 |
+
"loss": 0.7196,
|
861 |
+
"step": 100
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 7.136363636363637,
|
865 |
+
"eval_loss": 0.760471761226654,
|
866 |
+
"eval_runtime": 8.163,
|
867 |
+
"eval_samples_per_second": 42.264,
|
868 |
+
"eval_steps_per_second": 1.348,
|
869 |
+
"step": 100
|
870 |
+
},
|
871 |
+
{
|
872 |
+
"epoch": 7.204545454545454,
|
873 |
+
"grad_norm": 0.09082285897226833,
|
874 |
+
"learning_rate": 0.00038633093525179853,
|
875 |
+
"loss": 0.689,
|
876 |
+
"step": 101
|
877 |
+
},
|
878 |
+
{
|
879 |
+
"epoch": 7.2727272727272725,
|
880 |
+
"grad_norm": 0.07300115447818187,
|
881 |
+
"learning_rate": 0.00038417266187050356,
|
882 |
+
"loss": 0.7069,
|
883 |
+
"step": 102
|
884 |
+
},
|
885 |
+
{
|
886 |
+
"epoch": 7.340909090909091,
|
887 |
+
"grad_norm": 0.06718528998014116,
|
888 |
+
"learning_rate": 0.00038201438848920865,
|
889 |
+
"loss": 0.718,
|
890 |
+
"step": 103
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 7.409090909090909,
|
894 |
+
"grad_norm": 0.08404313205553988,
|
895 |
+
"learning_rate": 0.00037985611510791363,
|
896 |
+
"loss": 0.6987,
|
897 |
+
"step": 104
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 7.4772727272727275,
|
901 |
+
"grad_norm": 0.07162786614167946,
|
902 |
+
"learning_rate": 0.00037769784172661866,
|
903 |
+
"loss": 0.6605,
|
904 |
+
"step": 105
|
905 |
+
},
|
906 |
+
{
|
907 |
+
"epoch": 7.4772727272727275,
|
908 |
+
"eval_loss": 0.7371376752853394,
|
909 |
+
"eval_runtime": 8.1012,
|
910 |
+
"eval_samples_per_second": 42.586,
|
911 |
+
"eval_steps_per_second": 1.358,
|
912 |
+
"step": 105
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 7.545454545454545,
|
916 |
+
"grad_norm": 0.060641231448716866,
|
917 |
+
"learning_rate": 0.0003755395683453237,
|
918 |
+
"loss": 0.6773,
|
919 |
+
"step": 106
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 7.613636363636363,
|
923 |
+
"grad_norm": 0.06473252540275401,
|
924 |
+
"learning_rate": 0.00037338129496402873,
|
925 |
+
"loss": 0.6866,
|
926 |
+
"step": 107
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 7.681818181818182,
|
930 |
+
"grad_norm": 0.0947662567958378,
|
931 |
+
"learning_rate": 0.0003712230215827338,
|
932 |
+
"loss": 0.651,
|
933 |
+
"step": 108
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 7.75,
|
937 |
+
"grad_norm": 0.06431755115258421,
|
938 |
+
"learning_rate": 0.0003690647482014388,
|
939 |
+
"loss": 0.6606,
|
940 |
+
"step": 109
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 7.818181818181818,
|
944 |
+
"grad_norm": 0.07543868669008284,
|
945 |
+
"learning_rate": 0.00036690647482014383,
|
946 |
+
"loss": 0.6549,
|
947 |
+
"step": 110
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 7.818181818181818,
|
951 |
+
"eval_loss": 0.7132543921470642,
|
952 |
+
"eval_runtime": 8.0799,
|
953 |
+
"eval_samples_per_second": 42.699,
|
954 |
+
"eval_steps_per_second": 1.361,
|
955 |
+
"step": 110
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"epoch": 7.886363636363637,
|
959 |
+
"grad_norm": 0.10322842904159353,
|
960 |
+
"learning_rate": 0.00036474820143884886,
|
961 |
+
"loss": 0.6422,
|
962 |
+
"step": 111
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 7.954545454545455,
|
966 |
+
"grad_norm": 0.07214316605428214,
|
967 |
+
"learning_rate": 0.00036258992805755395,
|
968 |
+
"loss": 0.6592,
|
969 |
+
"step": 112
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 8.068181818181818,
|
973 |
+
"grad_norm": 0.15904006086990258,
|
974 |
+
"learning_rate": 0.000360431654676259,
|
975 |
+
"loss": 1.2614,
|
976 |
+
"step": 113
|
977 |
+
},
|
978 |
+
{
|
979 |
+
"epoch": 8.136363636363637,
|
980 |
+
"grad_norm": 0.21810505546948503,
|
981 |
+
"learning_rate": 0.00035827338129496396,
|
982 |
+
"loss": 0.6394,
|
983 |
+
"step": 114
|
984 |
+
},
|
985 |
+
{
|
986 |
+
"epoch": 8.204545454545455,
|
987 |
+
"grad_norm": 0.18881167923200506,
|
988 |
+
"learning_rate": 0.000356115107913669,
|
989 |
+
"loss": 0.6215,
|
990 |
+
"step": 115
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"epoch": 8.204545454545455,
|
994 |
+
"eval_loss": 0.6961513161659241,
|
995 |
+
"eval_runtime": 8.1036,
|
996 |
+
"eval_samples_per_second": 42.574,
|
997 |
+
"eval_steps_per_second": 1.357,
|
998 |
+
"step": 115
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 8.272727272727273,
|
1002 |
+
"grad_norm": 0.11991547706336511,
|
1003 |
+
"learning_rate": 0.0003539568345323741,
|
1004 |
+
"loss": 0.6001,
|
1005 |
+
"step": 116
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 8.340909090909092,
|
1009 |
+
"grad_norm": 0.10610492975126602,
|
1010 |
+
"learning_rate": 0.0003517985611510791,
|
1011 |
+
"loss": 0.6147,
|
1012 |
+
"step": 117
|
1013 |
+
},
|
1014 |
+
{
|
1015 |
+
"epoch": 8.409090909090908,
|
1016 |
+
"grad_norm": 0.07383301235145946,
|
1017 |
+
"learning_rate": 0.00034964028776978415,
|
1018 |
+
"loss": 0.6249,
|
1019 |
+
"step": 118
|
1020 |
+
},
|
1021 |
+
{
|
1022 |
+
"epoch": 8.477272727272727,
|
1023 |
+
"grad_norm": 0.08761123314254517,
|
1024 |
+
"learning_rate": 0.00034748201438848913,
|
1025 |
+
"loss": 0.6203,
|
1026 |
+
"step": 119
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"epoch": 8.545454545454545,
|
1030 |
+
"grad_norm": 0.0875433335148747,
|
1031 |
+
"learning_rate": 0.0003453237410071942,
|
1032 |
+
"loss": 0.5962,
|
1033 |
+
"step": 120
|
1034 |
+
},
|
1035 |
+
{
|
1036 |
+
"epoch": 8.545454545454545,
|
1037 |
+
"eval_loss": 0.6744011640548706,
|
1038 |
+
"eval_runtime": 8.1655,
|
1039 |
+
"eval_samples_per_second": 42.251,
|
1040 |
+
"eval_steps_per_second": 1.347,
|
1041 |
+
"step": 120
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 8.613636363636363,
|
1045 |
+
"grad_norm": 0.0804669990450829,
|
1046 |
+
"learning_rate": 0.00034316546762589925,
|
1047 |
+
"loss": 0.5797,
|
1048 |
+
"step": 121
|
1049 |
+
},
|
1050 |
+
{
|
1051 |
+
"epoch": 8.681818181818182,
|
1052 |
+
"grad_norm": 0.10163810468956126,
|
1053 |
+
"learning_rate": 0.0003410071942446043,
|
1054 |
+
"loss": 0.6141,
|
1055 |
+
"step": 122
|
1056 |
+
},
|
1057 |
+
{
|
1058 |
+
"epoch": 8.75,
|
1059 |
+
"grad_norm": 0.06901787740160394,
|
1060 |
+
"learning_rate": 0.00033884892086330937,
|
1061 |
+
"loss": 0.5954,
|
1062 |
+
"step": 123
|
1063 |
+
},
|
1064 |
+
{
|
1065 |
+
"epoch": 8.818181818181818,
|
1066 |
+
"grad_norm": 0.07500738403038662,
|
1067 |
+
"learning_rate": 0.00033669064748201435,
|
1068 |
+
"loss": 0.5846,
|
1069 |
+
"step": 124
|
1070 |
+
},
|
1071 |
+
{
|
1072 |
+
"epoch": 8.886363636363637,
|
1073 |
+
"grad_norm": 0.056159208261831656,
|
1074 |
+
"learning_rate": 0.0003345323741007194,
|
1075 |
+
"loss": 0.5864,
|
1076 |
+
"step": 125
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 8.886363636363637,
|
1080 |
+
"eval_loss": 0.652789294719696,
|
1081 |
+
"eval_runtime": 8.1035,
|
1082 |
+
"eval_samples_per_second": 42.574,
|
1083 |
+
"eval_steps_per_second": 1.357,
|
1084 |
+
"step": 125
|
1085 |
+
},
|
1086 |
+
{
|
1087 |
+
"epoch": 8.954545454545455,
|
1088 |
+
"grad_norm": 0.07655971589706316,
|
1089 |
+
"learning_rate": 0.0003323741007194244,
|
1090 |
+
"loss": 0.5853,
|
1091 |
+
"step": 126
|
1092 |
+
},
|
1093 |
+
{
|
1094 |
+
"epoch": 9.068181818181818,
|
1095 |
+
"grad_norm": 0.07005858183838025,
|
1096 |
+
"learning_rate": 0.0003302158273381295,
|
1097 |
+
"loss": 1.1897,
|
1098 |
+
"step": 127
|
1099 |
+
},
|
1100 |
+
{
|
1101 |
+
"epoch": 9.136363636363637,
|
1102 |
+
"grad_norm": 0.19748584358177812,
|
1103 |
+
"learning_rate": 0.00032805755395683454,
|
1104 |
+
"loss": 0.5652,
|
1105 |
+
"step": 128
|
1106 |
+
},
|
1107 |
+
{
|
1108 |
+
"epoch": 9.204545454545455,
|
1109 |
+
"grad_norm": 0.17565157213923313,
|
1110 |
+
"learning_rate": 0.0003258992805755395,
|
1111 |
+
"loss": 0.5616,
|
1112 |
+
"step": 129
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 9.272727272727273,
|
1116 |
+
"grad_norm": 0.12781434475550968,
|
1117 |
+
"learning_rate": 0.00032374100719424455,
|
1118 |
+
"loss": 0.5656,
|
1119 |
+
"step": 130
|
1120 |
+
},
|
1121 |
+
{
|
1122 |
+
"epoch": 9.272727272727273,
|
1123 |
+
"eval_loss": 0.6341322660446167,
|
1124 |
+
"eval_runtime": 8.0996,
|
1125 |
+
"eval_samples_per_second": 42.595,
|
1126 |
+
"eval_steps_per_second": 1.358,
|
1127 |
+
"step": 130
|
1128 |
+
},
|
1129 |
+
{
|
1130 |
+
"epoch": 9.340909090909092,
|
1131 |
+
"grad_norm": 0.09478195496196977,
|
1132 |
+
"learning_rate": 0.0003215827338129496,
|
1133 |
+
"loss": 0.5538,
|
1134 |
+
"step": 131
|
1135 |
+
},
|
1136 |
+
{
|
1137 |
+
"epoch": 9.409090909090908,
|
1138 |
+
"grad_norm": 0.07814734469857977,
|
1139 |
+
"learning_rate": 0.00031942446043165467,
|
1140 |
+
"loss": 0.5712,
|
1141 |
+
"step": 132
|
1142 |
+
},
|
1143 |
+
{
|
1144 |
+
"epoch": 9.477272727272727,
|
1145 |
+
"grad_norm": 0.11715404464320071,
|
1146 |
+
"learning_rate": 0.0003172661870503597,
|
1147 |
+
"loss": 0.5772,
|
1148 |
+
"step": 133
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 9.545454545454545,
|
1152 |
+
"grad_norm": 0.10851701577979252,
|
1153 |
+
"learning_rate": 0.0003151079136690647,
|
1154 |
+
"loss": 0.5461,
|
1155 |
+
"step": 134
|
1156 |
+
},
|
1157 |
+
{
|
1158 |
+
"epoch": 9.613636363636363,
|
1159 |
+
"grad_norm": 0.07846442623694214,
|
1160 |
+
"learning_rate": 0.0003129496402877697,
|
1161 |
+
"loss": 0.5402,
|
1162 |
+
"step": 135
|
1163 |
+
},
|
1164 |
+
{
|
1165 |
+
"epoch": 9.613636363636363,
|
1166 |
+
"eval_loss": 0.6194145679473877,
|
1167 |
+
"eval_runtime": 8.1104,
|
1168 |
+
"eval_samples_per_second": 42.538,
|
1169 |
+
"eval_steps_per_second": 1.356,
|
1170 |
+
"step": 135
|
1171 |
+
},
|
1172 |
+
{
|
1173 |
+
"epoch": 9.681818181818182,
|
1174 |
+
"grad_norm": 0.10514374248537121,
|
1175 |
+
"learning_rate": 0.0003107913669064748,
|
1176 |
+
"loss": 0.525,
|
1177 |
+
"step": 136
|
1178 |
+
},
|
1179 |
+
{
|
1180 |
+
"epoch": 9.75,
|
1181 |
+
"grad_norm": 0.08971285118440042,
|
1182 |
+
"learning_rate": 0.00030863309352517984,
|
1183 |
+
"loss": 0.4972,
|
1184 |
+
"step": 137
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 9.818181818181818,
|
1188 |
+
"grad_norm": 0.06608135269925829,
|
1189 |
+
"learning_rate": 0.0003064748201438849,
|
1190 |
+
"loss": 0.5349,
|
1191 |
+
"step": 138
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"epoch": 9.886363636363637,
|
1195 |
+
"grad_norm": 0.1142939740326944,
|
1196 |
+
"learning_rate": 0.00030431654676258985,
|
1197 |
+
"loss": 0.5429,
|
1198 |
+
"step": 139
|
1199 |
+
},
|
1200 |
+
{
|
1201 |
+
"epoch": 9.954545454545455,
|
1202 |
+
"grad_norm": 0.13673683790817512,
|
1203 |
+
"learning_rate": 0.00030215827338129494,
|
1204 |
+
"loss": 0.5215,
|
1205 |
+
"step": 140
|
1206 |
+
},
|
1207 |
+
{
|
1208 |
+
"epoch": 9.954545454545455,
|
1209 |
+
"eval_loss": 0.600115180015564,
|
1210 |
+
"eval_runtime": 8.1211,
|
1211 |
+
"eval_samples_per_second": 42.482,
|
1212 |
+
"eval_steps_per_second": 1.354,
|
1213 |
+
"step": 140
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 10.068181818181818,
|
1217 |
+
"grad_norm": 0.10493134429614773,
|
1218 |
+
"learning_rate": 0.0003,
|
1219 |
+
"loss": 0.967,
|
1220 |
+
"step": 141
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 10.136363636363637,
|
1224 |
+
"grad_norm": 0.16561964274537083,
|
1225 |
+
"learning_rate": 0.000297841726618705,
|
1226 |
+
"loss": 0.4827,
|
1227 |
+
"step": 142
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 10.204545454545455,
|
1231 |
+
"grad_norm": 0.162924047840722,
|
1232 |
+
"learning_rate": 0.00029568345323741004,
|
1233 |
+
"loss": 0.5392,
|
1234 |
+
"step": 143
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 10.272727272727273,
|
1238 |
+
"grad_norm": 0.09251237210120061,
|
1239 |
+
"learning_rate": 0.0002935251798561151,
|
1240 |
+
"loss": 0.4992,
|
1241 |
+
"step": 144
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 10.340909090909092,
|
1245 |
+
"grad_norm": 0.14647026195237808,
|
1246 |
+
"learning_rate": 0.0002913669064748201,
|
1247 |
+
"loss": 0.5115,
|
1248 |
+
"step": 145
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 10.340909090909092,
|
1252 |
+
"eval_loss": 0.5868861675262451,
|
1253 |
+
"eval_runtime": 8.1123,
|
1254 |
+
"eval_samples_per_second": 42.528,
|
1255 |
+
"eval_steps_per_second": 1.356,
|
1256 |
+
"step": 145
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 10.409090909090908,
|
1260 |
+
"grad_norm": 0.1499659365288202,
|
1261 |
+
"learning_rate": 0.00028920863309352514,
|
1262 |
+
"loss": 0.4766,
|
1263 |
+
"step": 146
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 10.477272727272727,
|
1267 |
+
"grad_norm": 0.07106519039044468,
|
1268 |
+
"learning_rate": 0.00028705035971223023,
|
1269 |
+
"loss": 0.4844,
|
1270 |
+
"step": 147
|
1271 |
+
},
|
1272 |
+
{
|
1273 |
+
"epoch": 10.545454545454545,
|
1274 |
+
"grad_norm": 0.17894361641043402,
|
1275 |
+
"learning_rate": 0.0002848920863309352,
|
1276 |
+
"loss": 0.4907,
|
1277 |
+
"step": 148
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"epoch": 10.613636363636363,
|
1281 |
+
"grad_norm": 0.1626378137158717,
|
1282 |
+
"learning_rate": 0.0002827338129496403,
|
1283 |
+
"loss": 0.4933,
|
1284 |
+
"step": 149
|
1285 |
+
},
|
1286 |
+
{
|
1287 |
+
"epoch": 10.681818181818182,
|
1288 |
+
"grad_norm": 0.0892443752243236,
|
1289 |
+
"learning_rate": 0.0002805755395683453,
|
1290 |
+
"loss": 0.4891,
|
1291 |
+
"step": 150
|
1292 |
+
},
|
1293 |
+
{
|
1294 |
+
"epoch": 10.681818181818182,
|
1295 |
+
"eval_loss": 0.5838680267333984,
|
1296 |
+
"eval_runtime": 8.0573,
|
1297 |
+
"eval_samples_per_second": 42.818,
|
1298 |
+
"eval_steps_per_second": 1.365,
|
1299 |
+
"step": 150
|
1300 |
+
},
|
1301 |
+
{
|
1302 |
+
"epoch": 10.75,
|
1303 |
+
"grad_norm": 0.27440984406143404,
|
1304 |
+
"learning_rate": 0.00027841726618705036,
|
1305 |
+
"loss": 0.484,
|
1306 |
+
"step": 151
|
1307 |
+
},
|
1308 |
+
{
|
1309 |
+
"epoch": 10.818181818181818,
|
1310 |
+
"grad_norm": 0.13434048428431264,
|
1311 |
+
"learning_rate": 0.0002762589928057554,
|
1312 |
+
"loss": 0.4759,
|
1313 |
+
"step": 152
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"epoch": 10.886363636363637,
|
1317 |
+
"grad_norm": 0.16112267903001737,
|
1318 |
+
"learning_rate": 0.00027410071942446043,
|
1319 |
+
"loss": 0.5201,
|
1320 |
+
"step": 153
|
1321 |
+
},
|
1322 |
+
{
|
1323 |
+
"epoch": 10.954545454545455,
|
1324 |
+
"grad_norm": 0.1280748974691452,
|
1325 |
+
"learning_rate": 0.00027194244604316546,
|
1326 |
+
"loss": 0.4874,
|
1327 |
+
"step": 154
|
1328 |
+
},
|
1329 |
+
{
|
1330 |
+
"epoch": 11.068181818181818,
|
1331 |
+
"grad_norm": 0.14768798415705536,
|
1332 |
+
"learning_rate": 0.00026978417266187044,
|
1333 |
+
"loss": 0.9152,
|
1334 |
+
"step": 155
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"epoch": 11.068181818181818,
|
1338 |
+
"eval_loss": 0.56056809425354,
|
1339 |
+
"eval_runtime": 8.1159,
|
1340 |
+
"eval_samples_per_second": 42.509,
|
1341 |
+
"eval_steps_per_second": 1.355,
|
1342 |
+
"step": 155
|
1343 |
+
},
|
1344 |
+
{
|
1345 |
+
"epoch": 11.136363636363637,
|
1346 |
+
"grad_norm": 0.17281537457304674,
|
1347 |
+
"learning_rate": 0.00026762589928057553,
|
1348 |
+
"loss": 0.442,
|
1349 |
+
"step": 156
|
1350 |
+
},
|
1351 |
+
{
|
1352 |
+
"epoch": 11.204545454545455,
|
1353 |
+
"grad_norm": 0.0799378687363225,
|
1354 |
+
"learning_rate": 0.00026546762589928056,
|
1355 |
+
"loss": 0.4571,
|
1356 |
+
"step": 157
|
1357 |
+
},
|
1358 |
+
{
|
1359 |
+
"epoch": 11.272727272727273,
|
1360 |
+
"grad_norm": 0.21433595800915295,
|
1361 |
+
"learning_rate": 0.0002633093525179856,
|
1362 |
+
"loss": 0.4397,
|
1363 |
+
"step": 158
|
1364 |
+
},
|
1365 |
+
{
|
1366 |
+
"epoch": 11.340909090909092,
|
1367 |
+
"grad_norm": 0.09332650715266853,
|
1368 |
+
"learning_rate": 0.00026115107913669063,
|
1369 |
+
"loss": 0.4617,
|
1370 |
+
"step": 159
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 11.409090909090908,
|
1374 |
+
"grad_norm": 0.14833046046688694,
|
1375 |
+
"learning_rate": 0.00025899280575539566,
|
1376 |
+
"loss": 0.4978,
|
1377 |
+
"step": 160
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 11.409090909090908,
|
1381 |
+
"eval_loss": 0.5487589240074158,
|
1382 |
+
"eval_runtime": 8.1067,
|
1383 |
+
"eval_samples_per_second": 42.557,
|
1384 |
+
"eval_steps_per_second": 1.357,
|
1385 |
+
"step": 160
|
1386 |
+
},
|
1387 |
+
{
|
1388 |
+
"epoch": 11.477272727272727,
|
1389 |
+
"grad_norm": 0.07921014426393756,
|
1390 |
+
"learning_rate": 0.0002568345323741007,
|
1391 |
+
"loss": 0.4453,
|
1392 |
+
"step": 161
|
1393 |
+
},
|
1394 |
+
{
|
1395 |
+
"epoch": 11.545454545454545,
|
1396 |
+
"grad_norm": 0.15601182732492996,
|
1397 |
+
"learning_rate": 0.00025467625899280573,
|
1398 |
+
"loss": 0.4445,
|
1399 |
+
"step": 162
|
1400 |
+
},
|
1401 |
+
{
|
1402 |
+
"epoch": 11.613636363636363,
|
1403 |
+
"grad_norm": 0.07510144664496499,
|
1404 |
+
"learning_rate": 0.00025251798561151076,
|
1405 |
+
"loss": 0.4643,
|
1406 |
+
"step": 163
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"epoch": 11.681818181818182,
|
1410 |
+
"grad_norm": 0.11780370413334754,
|
1411 |
+
"learning_rate": 0.0002503597122302158,
|
1412 |
+
"loss": 0.4684,
|
1413 |
+
"step": 164
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"epoch": 11.75,
|
1417 |
+
"grad_norm": 0.06574210995544665,
|
1418 |
+
"learning_rate": 0.00024820143884892083,
|
1419 |
+
"loss": 0.4392,
|
1420 |
+
"step": 165
|
1421 |
+
},
|
1422 |
+
{
|
1423 |
+
"epoch": 11.75,
|
1424 |
+
"eval_loss": 0.5396679639816284,
|
1425 |
+
"eval_runtime": 8.2272,
|
1426 |
+
"eval_samples_per_second": 41.934,
|
1427 |
+
"eval_steps_per_second": 1.337,
|
1428 |
+
"step": 165
|
1429 |
+
},
|
1430 |
+
{
|
1431 |
+
"epoch": 11.818181818181818,
|
1432 |
+
"grad_norm": 0.10960712955842936,
|
1433 |
+
"learning_rate": 0.00024604316546762586,
|
1434 |
+
"loss": 0.4286,
|
1435 |
+
"step": 166
|
1436 |
+
},
|
1437 |
+
{
|
1438 |
+
"epoch": 11.886363636363637,
|
1439 |
+
"grad_norm": 0.07332415603518998,
|
1440 |
+
"learning_rate": 0.00024388489208633092,
|
1441 |
+
"loss": 0.4556,
|
1442 |
+
"step": 167
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 11.954545454545455,
|
1446 |
+
"grad_norm": 0.10841486389802954,
|
1447 |
+
"learning_rate": 0.00024172661870503596,
|
1448 |
+
"loss": 0.4292,
|
1449 |
+
"step": 168
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 12.068181818181818,
|
1453 |
+
"grad_norm": 0.13773348868190266,
|
1454 |
+
"learning_rate": 0.000239568345323741,
|
1455 |
+
"loss": 0.865,
|
1456 |
+
"step": 169
|
1457 |
+
},
|
1458 |
+
{
|
1459 |
+
"epoch": 12.136363636363637,
|
1460 |
+
"grad_norm": 0.09517483310495542,
|
1461 |
+
"learning_rate": 0.00023741007194244602,
|
1462 |
+
"loss": 0.4278,
|
1463 |
+
"step": 170
|
1464 |
+
},
|
1465 |
+
{
|
1466 |
+
"epoch": 12.136363636363637,
|
1467 |
+
"eval_loss": 0.5233399271965027,
|
1468 |
+
"eval_runtime": 8.1575,
|
1469 |
+
"eval_samples_per_second": 42.292,
|
1470 |
+
"eval_steps_per_second": 1.348,
|
1471 |
+
"step": 170
|
1472 |
+
},
|
1473 |
+
{
|
1474 |
+
"epoch": 12.204545454545455,
|
1475 |
+
"grad_norm": 0.11670736635466054,
|
1476 |
+
"learning_rate": 0.00023525179856115106,
|
1477 |
+
"loss": 0.3987,
|
1478 |
+
"step": 171
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"epoch": 12.272727272727273,
|
1482 |
+
"grad_norm": 0.07196092343379756,
|
1483 |
+
"learning_rate": 0.00023309352517985612,
|
1484 |
+
"loss": 0.4172,
|
1485 |
+
"step": 172
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"epoch": 12.340909090909092,
|
1489 |
+
"grad_norm": 0.09829639973921499,
|
1490 |
+
"learning_rate": 0.00023093525179856112,
|
1491 |
+
"loss": 0.4015,
|
1492 |
+
"step": 173
|
1493 |
+
},
|
1494 |
+
{
|
1495 |
+
"epoch": 12.409090909090908,
|
1496 |
+
"grad_norm": 0.07739219650242106,
|
1497 |
+
"learning_rate": 0.00022877697841726619,
|
1498 |
+
"loss": 0.4259,
|
1499 |
+
"step": 174
|
1500 |
+
},
|
1501 |
+
{
|
1502 |
+
"epoch": 12.477272727272727,
|
1503 |
+
"grad_norm": 0.11176949765148367,
|
1504 |
+
"learning_rate": 0.0002266187050359712,
|
1505 |
+
"loss": 0.3958,
|
1506 |
+
"step": 175
|
1507 |
+
},
|
1508 |
+
{
|
1509 |
+
"epoch": 12.477272727272727,
|
1510 |
+
"eval_loss": 0.5135964751243591,
|
1511 |
+
"eval_runtime": 8.155,
|
1512 |
+
"eval_samples_per_second": 42.305,
|
1513 |
+
"eval_steps_per_second": 1.349,
|
1514 |
+
"step": 175
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 12.545454545454545,
|
1518 |
+
"grad_norm": 0.06556681258781275,
|
1519 |
+
"learning_rate": 0.00022446043165467625,
|
1520 |
+
"loss": 0.4112,
|
1521 |
+
"step": 176
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 12.613636363636363,
|
1525 |
+
"grad_norm": 0.12795332715601584,
|
1526 |
+
"learning_rate": 0.00022230215827338126,
|
1527 |
+
"loss": 0.4005,
|
1528 |
+
"step": 177
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 12.681818181818182,
|
1532 |
+
"grad_norm": 0.07489737984402697,
|
1533 |
+
"learning_rate": 0.00022014388489208632,
|
1534 |
+
"loss": 0.4326,
|
1535 |
+
"step": 178
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 12.75,
|
1539 |
+
"grad_norm": 0.11620609466625059,
|
1540 |
+
"learning_rate": 0.00021798561151079135,
|
1541 |
+
"loss": 0.4163,
|
1542 |
+
"step": 179
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 12.818181818181818,
|
1546 |
+
"grad_norm": 0.07897045044401589,
|
1547 |
+
"learning_rate": 0.00021582733812949639,
|
1548 |
+
"loss": 0.4209,
|
1549 |
+
"step": 180
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 12.818181818181818,
|
1553 |
+
"eval_loss": 0.507025957107544,
|
1554 |
+
"eval_runtime": 8.1478,
|
1555 |
+
"eval_samples_per_second": 42.342,
|
1556 |
+
"eval_steps_per_second": 1.35,
|
1557 |
+
"step": 180
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 12.886363636363637,
|
1561 |
+
"grad_norm": 0.13249818119947815,
|
1562 |
+
"learning_rate": 0.00021366906474820142,
|
1563 |
+
"loss": 0.4302,
|
1564 |
+
"step": 181
|
1565 |
+
},
|
1566 |
+
{
|
1567 |
+
"epoch": 12.954545454545455,
|
1568 |
+
"grad_norm": 0.07969495739846802,
|
1569 |
+
"learning_rate": 0.00021151079136690645,
|
1570 |
+
"loss": 0.4201,
|
1571 |
+
"step": 182
|
1572 |
+
},
|
1573 |
+
{
|
1574 |
+
"epoch": 13.068181818181818,
|
1575 |
+
"grad_norm": 0.19984471066003717,
|
1576 |
+
"learning_rate": 0.00020935251798561149,
|
1577 |
+
"loss": 0.8197,
|
1578 |
+
"step": 183
|
1579 |
+
},
|
1580 |
+
{
|
1581 |
+
"epoch": 13.136363636363637,
|
1582 |
+
"grad_norm": 0.12211234815618778,
|
1583 |
+
"learning_rate": 0.00020719424460431655,
|
1584 |
+
"loss": 0.4014,
|
1585 |
+
"step": 184
|
1586 |
+
},
|
1587 |
+
{
|
1588 |
+
"epoch": 13.204545454545455,
|
1589 |
+
"grad_norm": 0.18297945511382022,
|
1590 |
+
"learning_rate": 0.00020503597122302155,
|
1591 |
+
"loss": 0.3888,
|
1592 |
+
"step": 185
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 13.204545454545455,
|
1596 |
+
"eval_loss": 0.494705468416214,
|
1597 |
+
"eval_runtime": 8.1707,
|
1598 |
+
"eval_samples_per_second": 42.224,
|
1599 |
+
"eval_steps_per_second": 1.346,
|
1600 |
+
"step": 185
|
1601 |
+
},
|
1602 |
+
{
|
1603 |
+
"epoch": 13.272727272727273,
|
1604 |
+
"grad_norm": 0.09251321210756497,
|
1605 |
+
"learning_rate": 0.00020287769784172661,
|
1606 |
+
"loss": 0.3821,
|
1607 |
+
"step": 186
|
1608 |
+
},
|
1609 |
+
{
|
1610 |
+
"epoch": 13.340909090909092,
|
1611 |
+
"grad_norm": 0.15213705721466902,
|
1612 |
+
"learning_rate": 0.00020071942446043162,
|
1613 |
+
"loss": 0.3894,
|
1614 |
+
"step": 187
|
1615 |
+
},
|
1616 |
+
{
|
1617 |
+
"epoch": 13.409090909090908,
|
1618 |
+
"grad_norm": 0.07454811530243735,
|
1619 |
+
"learning_rate": 0.00019856115107913668,
|
1620 |
+
"loss": 0.3975,
|
1621 |
+
"step": 188
|
1622 |
+
},
|
1623 |
+
{
|
1624 |
+
"epoch": 13.477272727272727,
|
1625 |
+
"grad_norm": 0.14992536988055402,
|
1626 |
+
"learning_rate": 0.00019640287769784171,
|
1627 |
+
"loss": 0.3974,
|
1628 |
+
"step": 189
|
1629 |
+
},
|
1630 |
+
{
|
1631 |
+
"epoch": 13.545454545454545,
|
1632 |
+
"grad_norm": 0.06448571903273097,
|
1633 |
+
"learning_rate": 0.00019424460431654675,
|
1634 |
+
"loss": 0.3806,
|
1635 |
+
"step": 190
|
1636 |
+
},
|
1637 |
+
{
|
1638 |
+
"epoch": 13.545454545454545,
|
1639 |
+
"eval_loss": 0.487366259098053,
|
1640 |
+
"eval_runtime": 8.1876,
|
1641 |
+
"eval_samples_per_second": 42.137,
|
1642 |
+
"eval_steps_per_second": 1.343,
|
1643 |
+
"step": 190
|
1644 |
+
},
|
1645 |
+
{
|
1646 |
+
"epoch": 13.613636363636363,
|
1647 |
+
"grad_norm": 0.11272277028746622,
|
1648 |
+
"learning_rate": 0.00019208633093525178,
|
1649 |
+
"loss": 0.3897,
|
1650 |
+
"step": 191
|
1651 |
+
},
|
1652 |
+
{
|
1653 |
+
"epoch": 13.681818181818182,
|
1654 |
+
"grad_norm": 0.08081145217978,
|
1655 |
+
"learning_rate": 0.00018992805755395681,
|
1656 |
+
"loss": 0.3796,
|
1657 |
+
"step": 192
|
1658 |
+
},
|
1659 |
+
{
|
1660 |
+
"epoch": 13.75,
|
1661 |
+
"grad_norm": 0.08522911727576384,
|
1662 |
+
"learning_rate": 0.00018776978417266185,
|
1663 |
+
"loss": 0.3436,
|
1664 |
+
"step": 193
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 13.818181818181818,
|
1668 |
+
"grad_norm": 0.11240521342686531,
|
1669 |
+
"learning_rate": 0.0001856115107913669,
|
1670 |
+
"loss": 0.3686,
|
1671 |
+
"step": 194
|
1672 |
+
},
|
1673 |
+
{
|
1674 |
+
"epoch": 13.886363636363637,
|
1675 |
+
"grad_norm": 0.06483018069250533,
|
1676 |
+
"learning_rate": 0.00018345323741007191,
|
1677 |
+
"loss": 0.3871,
|
1678 |
+
"step": 195
|
1679 |
+
},
|
1680 |
+
{
|
1681 |
+
"epoch": 13.886363636363637,
|
1682 |
+
"eval_loss": 0.4793089032173157,
|
1683 |
+
"eval_runtime": 8.1707,
|
1684 |
+
"eval_samples_per_second": 42.224,
|
1685 |
+
"eval_steps_per_second": 1.346,
|
1686 |
+
"step": 195
|
1687 |
+
},
|
1688 |
+
{
|
1689 |
+
"epoch": 13.954545454545455,
|
1690 |
+
"grad_norm": 0.0976652467502851,
|
1691 |
+
"learning_rate": 0.00018129496402877698,
|
1692 |
+
"loss": 0.3912,
|
1693 |
+
"step": 196
|
1694 |
+
},
|
1695 |
+
{
|
1696 |
+
"epoch": 14.068181818181818,
|
1697 |
+
"grad_norm": 0.14183259795581768,
|
1698 |
+
"learning_rate": 0.00017913669064748198,
|
1699 |
+
"loss": 0.75,
|
1700 |
+
"step": 197
|
1701 |
+
},
|
1702 |
+
{
|
1703 |
+
"epoch": 14.136363636363637,
|
1704 |
+
"grad_norm": 0.15039538764571156,
|
1705 |
+
"learning_rate": 0.00017697841726618704,
|
1706 |
+
"loss": 0.3594,
|
1707 |
+
"step": 198
|
1708 |
+
},
|
1709 |
+
{
|
1710 |
+
"epoch": 14.204545454545455,
|
1711 |
+
"grad_norm": 0.10441744555719841,
|
1712 |
+
"learning_rate": 0.00017482014388489208,
|
1713 |
+
"loss": 0.3752,
|
1714 |
+
"step": 199
|
1715 |
+
},
|
1716 |
+
{
|
1717 |
+
"epoch": 14.272727272727273,
|
1718 |
+
"grad_norm": 0.081621816946566,
|
1719 |
+
"learning_rate": 0.0001726618705035971,
|
1720 |
+
"loss": 0.3332,
|
1721 |
+
"step": 200
|
1722 |
+
},
|
1723 |
+
{
|
1724 |
+
"epoch": 14.272727272727273,
|
1725 |
+
"eval_loss": 0.47283512353897095,
|
1726 |
+
"eval_runtime": 8.1865,
|
1727 |
+
"eval_samples_per_second": 42.143,
|
1728 |
+
"eval_steps_per_second": 1.344,
|
1729 |
+
"step": 200
|
1730 |
+
},
|
1731 |
+
{
|
1732 |
+
"epoch": 14.340909090909092,
|
1733 |
+
"grad_norm": 0.09776463571045789,
|
1734 |
+
"learning_rate": 0.00017050359712230214,
|
1735 |
+
"loss": 0.3731,
|
1736 |
+
"step": 201
|
1737 |
+
},
|
1738 |
+
{
|
1739 |
+
"epoch": 14.409090909090908,
|
1740 |
+
"grad_norm": 0.06977152109817872,
|
1741 |
+
"learning_rate": 0.00016834532374100718,
|
1742 |
+
"loss": 0.3673,
|
1743 |
+
"step": 202
|
1744 |
+
},
|
1745 |
+
{
|
1746 |
+
"epoch": 14.477272727272727,
|
1747 |
+
"grad_norm": 0.1041029864884573,
|
1748 |
+
"learning_rate": 0.0001661870503597122,
|
1749 |
+
"loss": 0.384,
|
1750 |
+
"step": 203
|
1751 |
+
},
|
1752 |
+
{
|
1753 |
+
"epoch": 14.545454545454545,
|
1754 |
+
"grad_norm": 0.08584508664675919,
|
1755 |
+
"learning_rate": 0.00016402877697841727,
|
1756 |
+
"loss": 0.3304,
|
1757 |
+
"step": 204
|
1758 |
+
},
|
1759 |
+
{
|
1760 |
+
"epoch": 14.613636363636363,
|
1761 |
+
"grad_norm": 0.07983583929206736,
|
1762 |
+
"learning_rate": 0.00016187050359712228,
|
1763 |
+
"loss": 0.3739,
|
1764 |
+
"step": 205
|
1765 |
+
},
|
1766 |
+
{
|
1767 |
+
"epoch": 14.613636363636363,
|
1768 |
+
"eval_loss": 0.466562956571579,
|
1769 |
+
"eval_runtime": 8.1459,
|
1770 |
+
"eval_samples_per_second": 42.353,
|
1771 |
+
"eval_steps_per_second": 1.35,
|
1772 |
+
"step": 205
|
1773 |
+
},
|
1774 |
+
{
|
1775 |
+
"epoch": 14.681818181818182,
|
1776 |
+
"grad_norm": 0.08837837350936771,
|
1777 |
+
"learning_rate": 0.00015971223021582734,
|
1778 |
+
"loss": 0.3616,
|
1779 |
+
"step": 206
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 14.75,
|
1783 |
+
"grad_norm": 0.06536712343194125,
|
1784 |
+
"learning_rate": 0.00015755395683453234,
|
1785 |
+
"loss": 0.364,
|
1786 |
+
"step": 207
|
1787 |
+
},
|
1788 |
+
{
|
1789 |
+
"epoch": 14.818181818181818,
|
1790 |
+
"grad_norm": 0.11088746286141922,
|
1791 |
+
"learning_rate": 0.0001553956834532374,
|
1792 |
+
"loss": 0.3655,
|
1793 |
+
"step": 208
|
1794 |
+
},
|
1795 |
+
{
|
1796 |
+
"epoch": 14.886363636363637,
|
1797 |
+
"grad_norm": 0.07585632045910784,
|
1798 |
+
"learning_rate": 0.00015323741007194244,
|
1799 |
+
"loss": 0.3515,
|
1800 |
+
"step": 209
|
1801 |
+
},
|
1802 |
+
{
|
1803 |
+
"epoch": 14.954545454545455,
|
1804 |
+
"grad_norm": 0.09348984221501862,
|
1805 |
+
"learning_rate": 0.00015107913669064747,
|
1806 |
+
"loss": 0.3524,
|
1807 |
+
"step": 210
|
1808 |
+
},
|
1809 |
+
{
|
1810 |
+
"epoch": 14.954545454545455,
|
1811 |
+
"eval_loss": 0.46005722880363464,
|
1812 |
+
"eval_runtime": 8.1762,
|
1813 |
+
"eval_samples_per_second": 42.196,
|
1814 |
+
"eval_steps_per_second": 1.345,
|
1815 |
+
"step": 210
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 15.068181818181818,
|
1819 |
+
"grad_norm": 0.07890438213156956,
|
1820 |
+
"learning_rate": 0.0001489208633093525,
|
1821 |
+
"loss": 0.6623,
|
1822 |
+
"step": 211
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 15.136363636363637,
|
1826 |
+
"grad_norm": 0.1191222549862852,
|
1827 |
+
"learning_rate": 0.00014676258992805754,
|
1828 |
+
"loss": 0.3495,
|
1829 |
+
"step": 212
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 15.204545454545455,
|
1833 |
+
"grad_norm": 0.06185045761269511,
|
1834 |
+
"learning_rate": 0.00014460431654676257,
|
1835 |
+
"loss": 0.3055,
|
1836 |
+
"step": 213
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 15.272727272727273,
|
1840 |
+
"grad_norm": 0.08497423275342772,
|
1841 |
+
"learning_rate": 0.0001424460431654676,
|
1842 |
+
"loss": 0.3765,
|
1843 |
+
"step": 214
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 15.340909090909092,
|
1847 |
+
"grad_norm": 0.08906070998853617,
|
1848 |
+
"learning_rate": 0.00014028776978417264,
|
1849 |
+
"loss": 0.3607,
|
1850 |
+
"step": 215
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 15.340909090909092,
|
1854 |
+
"eval_loss": 0.45624327659606934,
|
1855 |
+
"eval_runtime": 8.1949,
|
1856 |
+
"eval_samples_per_second": 42.099,
|
1857 |
+
"eval_steps_per_second": 1.342,
|
1858 |
+
"step": 215
|
1859 |
+
},
|
1860 |
+
{
|
1861 |
+
"epoch": 15.409090909090908,
|
1862 |
+
"grad_norm": 0.07301056986880991,
|
1863 |
+
"learning_rate": 0.0001381294964028777,
|
1864 |
+
"loss": 0.3499,
|
1865 |
+
"step": 216
|
1866 |
+
},
|
1867 |
+
{
|
1868 |
+
"epoch": 15.477272727272727,
|
1869 |
+
"grad_norm": 0.07668608830596545,
|
1870 |
+
"learning_rate": 0.00013597122302158273,
|
1871 |
+
"loss": 0.3499,
|
1872 |
+
"step": 217
|
1873 |
+
},
|
1874 |
+
{
|
1875 |
+
"epoch": 15.545454545454545,
|
1876 |
+
"grad_norm": 0.06073370724732525,
|
1877 |
+
"learning_rate": 0.00013381294964028776,
|
1878 |
+
"loss": 0.3359,
|
1879 |
+
"step": 218
|
1880 |
+
},
|
1881 |
+
{
|
1882 |
+
"epoch": 15.613636363636363,
|
1883 |
+
"grad_norm": 0.06556307128336165,
|
1884 |
+
"learning_rate": 0.0001316546762589928,
|
1885 |
+
"loss": 0.3338,
|
1886 |
+
"step": 219
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"epoch": 15.681818181818182,
|
1890 |
+
"grad_norm": 0.07217080368469764,
|
1891 |
+
"learning_rate": 0.00012949640287769783,
|
1892 |
+
"loss": 0.3414,
|
1893 |
+
"step": 220
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"epoch": 15.681818181818182,
|
1897 |
+
"eval_loss": 0.4507344961166382,
|
1898 |
+
"eval_runtime": 8.1857,
|
1899 |
+
"eval_samples_per_second": 42.147,
|
1900 |
+
"eval_steps_per_second": 1.344,
|
1901 |
+
"step": 220
|
1902 |
+
},
|
1903 |
+
{
|
1904 |
+
"epoch": 15.75,
|
1905 |
+
"grad_norm": 0.061757349083139026,
|
1906 |
+
"learning_rate": 0.00012733812949640286,
|
1907 |
+
"loss": 0.3354,
|
1908 |
+
"step": 221
|
1909 |
+
},
|
1910 |
+
{
|
1911 |
+
"epoch": 15.818181818181818,
|
1912 |
+
"grad_norm": 0.06051722415615884,
|
1913 |
+
"learning_rate": 0.0001251798561151079,
|
1914 |
+
"loss": 0.3342,
|
1915 |
+
"step": 222
|
1916 |
+
},
|
1917 |
+
{
|
1918 |
+
"epoch": 15.886363636363637,
|
1919 |
+
"grad_norm": 0.06848430674865956,
|
1920 |
+
"learning_rate": 0.00012302158273381293,
|
1921 |
+
"loss": 0.3634,
|
1922 |
+
"step": 223
|
1923 |
+
},
|
1924 |
+
{
|
1925 |
+
"epoch": 15.954545454545455,
|
1926 |
+
"grad_norm": 0.05957494305674734,
|
1927 |
+
"learning_rate": 0.00012086330935251798,
|
1928 |
+
"loss": 0.3154,
|
1929 |
+
"step": 224
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"epoch": 16.068181818181817,
|
1933 |
+
"grad_norm": 0.12697352207454715,
|
1934 |
+
"learning_rate": 0.00011870503597122301,
|
1935 |
+
"loss": 0.6801,
|
1936 |
+
"step": 225
|
1937 |
+
},
|
1938 |
+
{
|
1939 |
+
"epoch": 16.068181818181817,
|
1940 |
+
"eval_loss": 0.4470911920070648,
|
1941 |
+
"eval_runtime": 8.1906,
|
1942 |
+
"eval_samples_per_second": 42.121,
|
1943 |
+
"eval_steps_per_second": 1.343,
|
1944 |
+
"step": 225
|
1945 |
+
},
|
1946 |
+
{
|
1947 |
+
"epoch": 16.136363636363637,
|
1948 |
+
"grad_norm": 0.05481106587672259,
|
1949 |
+
"learning_rate": 0.00011654676258992806,
|
1950 |
+
"loss": 0.332,
|
1951 |
+
"step": 226
|
1952 |
+
},
|
1953 |
+
{
|
1954 |
+
"epoch": 16.204545454545453,
|
1955 |
+
"grad_norm": 0.10019632098385153,
|
1956 |
+
"learning_rate": 0.00011438848920863309,
|
1957 |
+
"loss": 0.313,
|
1958 |
+
"step": 227
|
1959 |
+
},
|
1960 |
+
{
|
1961 |
+
"epoch": 16.272727272727273,
|
1962 |
+
"grad_norm": 0.09992054523925828,
|
1963 |
+
"learning_rate": 0.00011223021582733813,
|
1964 |
+
"loss": 0.3745,
|
1965 |
+
"step": 228
|
1966 |
+
},
|
1967 |
+
{
|
1968 |
+
"epoch": 16.34090909090909,
|
1969 |
+
"grad_norm": 0.06934668238613058,
|
1970 |
+
"learning_rate": 0.00011007194244604316,
|
1971 |
+
"loss": 0.3221,
|
1972 |
+
"step": 229
|
1973 |
+
},
|
1974 |
+
{
|
1975 |
+
"epoch": 16.40909090909091,
|
1976 |
+
"grad_norm": 0.09954481493110205,
|
1977 |
+
"learning_rate": 0.00010791366906474819,
|
1978 |
+
"loss": 0.3267,
|
1979 |
+
"step": 230
|
1980 |
+
},
|
1981 |
+
{
|
1982 |
+
"epoch": 16.40909090909091,
|
1983 |
+
"eval_loss": 0.44152382016181946,
|
1984 |
+
"eval_runtime": 8.1734,
|
1985 |
+
"eval_samples_per_second": 42.21,
|
1986 |
+
"eval_steps_per_second": 1.346,
|
1987 |
+
"step": 230
|
1988 |
+
},
|
1989 |
+
{
|
1990 |
+
"epoch": 16.477272727272727,
|
1991 |
+
"grad_norm": 0.0667074679165625,
|
1992 |
+
"learning_rate": 0.00010575539568345323,
|
1993 |
+
"loss": 0.3307,
|
1994 |
+
"step": 231
|
1995 |
+
},
|
1996 |
+
{
|
1997 |
+
"epoch": 16.545454545454547,
|
1998 |
+
"grad_norm": 0.06280076611603405,
|
1999 |
+
"learning_rate": 0.00010359712230215827,
|
2000 |
+
"loss": 0.3086,
|
2001 |
+
"step": 232
|
2002 |
+
},
|
2003 |
+
{
|
2004 |
+
"epoch": 16.613636363636363,
|
2005 |
+
"grad_norm": 0.09190867726250708,
|
2006 |
+
"learning_rate": 0.00010143884892086331,
|
2007 |
+
"loss": 0.3292,
|
2008 |
+
"step": 233
|
2009 |
+
},
|
2010 |
+
{
|
2011 |
+
"epoch": 16.681818181818183,
|
2012 |
+
"grad_norm": 0.0691856530660337,
|
2013 |
+
"learning_rate": 9.928057553956834e-05,
|
2014 |
+
"loss": 0.3189,
|
2015 |
+
"step": 234
|
2016 |
+
},
|
2017 |
+
{
|
2018 |
+
"epoch": 16.75,
|
2019 |
+
"grad_norm": 0.06396278550250076,
|
2020 |
+
"learning_rate": 9.712230215827337e-05,
|
2021 |
+
"loss": 0.3287,
|
2022 |
+
"step": 235
|
2023 |
+
},
|
2024 |
+
{
|
2025 |
+
"epoch": 16.75,
|
2026 |
+
"eval_loss": 0.43689295649528503,
|
2027 |
+
"eval_runtime": 8.1344,
|
2028 |
+
"eval_samples_per_second": 42.412,
|
2029 |
+
"eval_steps_per_second": 1.352,
|
2030 |
+
"step": 235
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 16.818181818181817,
|
2034 |
+
"grad_norm": 0.09629708140626497,
|
2035 |
+
"learning_rate": 9.496402877697841e-05,
|
2036 |
+
"loss": 0.3411,
|
2037 |
+
"step": 236
|
2038 |
+
},
|
2039 |
+
{
|
2040 |
+
"epoch": 16.886363636363637,
|
2041 |
+
"grad_norm": 0.06643026894108751,
|
2042 |
+
"learning_rate": 9.280575539568345e-05,
|
2043 |
+
"loss": 0.3176,
|
2044 |
+
"step": 237
|
2045 |
+
},
|
2046 |
+
{
|
2047 |
+
"epoch": 16.954545454545453,
|
2048 |
+
"grad_norm": 0.06551028670273006,
|
2049 |
+
"learning_rate": 9.064748201438849e-05,
|
2050 |
+
"loss": 0.3128,
|
2051 |
+
"step": 238
|
2052 |
+
},
|
2053 |
+
{
|
2054 |
+
"epoch": 17.068181818181817,
|
2055 |
+
"grad_norm": 0.11470202357696171,
|
2056 |
+
"learning_rate": 8.848920863309352e-05,
|
2057 |
+
"loss": 0.6274,
|
2058 |
+
"step": 239
|
2059 |
+
},
|
2060 |
+
{
|
2061 |
+
"epoch": 17.136363636363637,
|
2062 |
+
"grad_norm": 0.4627562620964029,
|
2063 |
+
"learning_rate": 8.633093525179855e-05,
|
2064 |
+
"loss": 0.3079,
|
2065 |
+
"step": 240
|
2066 |
+
},
|
2067 |
+
{
|
2068 |
+
"epoch": 17.136363636363637,
|
2069 |
+
"eval_loss": 0.434725284576416,
|
2070 |
+
"eval_runtime": 8.1069,
|
2071 |
+
"eval_samples_per_second": 42.556,
|
2072 |
+
"eval_steps_per_second": 1.357,
|
2073 |
+
"step": 240
|
2074 |
+
},
|
2075 |
+
{
|
2076 |
+
"epoch": 17.204545454545453,
|
2077 |
+
"grad_norm": 0.05622563116143702,
|
2078 |
+
"learning_rate": 8.417266187050359e-05,
|
2079 |
+
"loss": 0.3323,
|
2080 |
+
"step": 241
|
2081 |
+
},
|
2082 |
+
{
|
2083 |
+
"epoch": 17.272727272727273,
|
2084 |
+
"grad_norm": 0.06350096496467941,
|
2085 |
+
"learning_rate": 8.201438848920863e-05,
|
2086 |
+
"loss": 0.3087,
|
2087 |
+
"step": 242
|
2088 |
+
},
|
2089 |
+
{
|
2090 |
+
"epoch": 17.34090909090909,
|
2091 |
+
"grad_norm": 0.05459387266068515,
|
2092 |
+
"learning_rate": 7.985611510791367e-05,
|
2093 |
+
"loss": 0.312,
|
2094 |
+
"step": 243
|
2095 |
+
},
|
2096 |
+
{
|
2097 |
+
"epoch": 17.40909090909091,
|
2098 |
+
"grad_norm": 0.06203856016561787,
|
2099 |
+
"learning_rate": 7.76978417266187e-05,
|
2100 |
+
"loss": 0.3094,
|
2101 |
+
"step": 244
|
2102 |
+
},
|
2103 |
+
{
|
2104 |
+
"epoch": 17.477272727272727,
|
2105 |
+
"grad_norm": 0.05947669597473931,
|
2106 |
+
"learning_rate": 7.553956834532374e-05,
|
2107 |
+
"loss": 0.2895,
|
2108 |
+
"step": 245
|
2109 |
+
},
|
2110 |
+
{
|
2111 |
+
"epoch": 17.477272727272727,
|
2112 |
+
"eval_loss": 0.4331265985965729,
|
2113 |
+
"eval_runtime": 8.1797,
|
2114 |
+
"eval_samples_per_second": 42.178,
|
2115 |
+
"eval_steps_per_second": 1.345,
|
2116 |
+
"step": 245
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 17.545454545454547,
|
2120 |
+
"grad_norm": 0.05163204573021081,
|
2121 |
+
"learning_rate": 7.338129496402877e-05,
|
2122 |
+
"loss": 0.3176,
|
2123 |
+
"step": 246
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 17.613636363636363,
|
2127 |
+
"grad_norm": 0.06346968170334917,
|
2128 |
+
"learning_rate": 7.12230215827338e-05,
|
2129 |
+
"loss": 0.3245,
|
2130 |
+
"step": 247
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 17.681818181818183,
|
2134 |
+
"grad_norm": 0.05420377490160569,
|
2135 |
+
"learning_rate": 6.906474820143885e-05,
|
2136 |
+
"loss": 0.318,
|
2137 |
+
"step": 248
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 17.75,
|
2141 |
+
"grad_norm": 0.05592604212119131,
|
2142 |
+
"learning_rate": 6.690647482014388e-05,
|
2143 |
+
"loss": 0.3149,
|
2144 |
+
"step": 249
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 17.818181818181817,
|
2148 |
+
"grad_norm": 0.050821106572922,
|
2149 |
+
"learning_rate": 6.474820143884892e-05,
|
2150 |
+
"loss": 0.3174,
|
2151 |
+
"step": 250
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 17.818181818181817,
|
2155 |
+
"eval_loss": 0.4315319061279297,
|
2156 |
+
"eval_runtime": 8.1705,
|
2157 |
+
"eval_samples_per_second": 42.225,
|
2158 |
+
"eval_steps_per_second": 1.346,
|
2159 |
+
"step": 250
|
2160 |
+
},
|
2161 |
+
{
|
2162 |
+
"epoch": 17.886363636363637,
|
2163 |
+
"grad_norm": 0.07080304827929143,
|
2164 |
+
"learning_rate": 6.258992805755395e-05,
|
2165 |
+
"loss": 0.3165,
|
2166 |
+
"step": 251
|
2167 |
+
},
|
2168 |
+
{
|
2169 |
+
"epoch": 17.954545454545453,
|
2170 |
+
"grad_norm": 0.06560130882972819,
|
2171 |
+
"learning_rate": 6.043165467625899e-05,
|
2172 |
+
"loss": 0.3236,
|
2173 |
+
"step": 252
|
2174 |
+
},
|
2175 |
+
{
|
2176 |
+
"epoch": 18.068181818181817,
|
2177 |
+
"grad_norm": 0.06658966084563189,
|
2178 |
+
"learning_rate": 5.827338129496403e-05,
|
2179 |
+
"loss": 0.6614,
|
2180 |
+
"step": 253
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"epoch": 18.136363636363637,
|
2184 |
+
"grad_norm": 0.0916218363277117,
|
2185 |
+
"learning_rate": 5.611510791366906e-05,
|
2186 |
+
"loss": 0.3075,
|
2187 |
+
"step": 254
|
2188 |
+
},
|
2189 |
+
{
|
2190 |
+
"epoch": 18.204545454545453,
|
2191 |
+
"grad_norm": 0.07192213503440632,
|
2192 |
+
"learning_rate": 5.3956834532374096e-05,
|
2193 |
+
"loss": 0.3107,
|
2194 |
+
"step": 255
|
2195 |
+
},
|
2196 |
+
{
|
2197 |
+
"epoch": 18.204545454545453,
|
2198 |
+
"eval_loss": 0.42903071641921997,
|
2199 |
+
"eval_runtime": 8.1729,
|
2200 |
+
"eval_samples_per_second": 42.213,
|
2201 |
+
"eval_steps_per_second": 1.346,
|
2202 |
+
"step": 255
|
2203 |
+
},
|
2204 |
+
{
|
2205 |
+
"epoch": 18.272727272727273,
|
2206 |
+
"grad_norm": 0.0635515447467331,
|
2207 |
+
"learning_rate": 5.179856115107914e-05,
|
2208 |
+
"loss": 0.3214,
|
2209 |
+
"step": 256
|
2210 |
+
},
|
2211 |
+
{
|
2212 |
+
"epoch": 18.34090909090909,
|
2213 |
+
"grad_norm": 0.06841210180529204,
|
2214 |
+
"learning_rate": 4.964028776978417e-05,
|
2215 |
+
"loss": 0.3276,
|
2216 |
+
"step": 257
|
2217 |
+
},
|
2218 |
+
{
|
2219 |
+
"epoch": 18.40909090909091,
|
2220 |
+
"grad_norm": 0.061185936774457696,
|
2221 |
+
"learning_rate": 4.7482014388489204e-05,
|
2222 |
+
"loss": 0.3071,
|
2223 |
+
"step": 258
|
2224 |
+
},
|
2225 |
+
{
|
2226 |
+
"epoch": 18.477272727272727,
|
2227 |
+
"grad_norm": 0.05275334377337443,
|
2228 |
+
"learning_rate": 4.5323741007194244e-05,
|
2229 |
+
"loss": 0.2953,
|
2230 |
+
"step": 259
|
2231 |
+
},
|
2232 |
+
{
|
2233 |
+
"epoch": 18.545454545454547,
|
2234 |
+
"grad_norm": 0.048798716294526895,
|
2235 |
+
"learning_rate": 4.316546762589928e-05,
|
2236 |
+
"loss": 0.3008,
|
2237 |
+
"step": 260
|
2238 |
+
},
|
2239 |
+
{
|
2240 |
+
"epoch": 18.545454545454547,
|
2241 |
+
"eval_loss": 0.42624351382255554,
|
2242 |
+
"eval_runtime": 8.1969,
|
2243 |
+
"eval_samples_per_second": 42.089,
|
2244 |
+
"eval_steps_per_second": 1.342,
|
2245 |
+
"step": 260
|
2246 |
+
},
|
2247 |
+
{
|
2248 |
+
"epoch": 18.613636363636363,
|
2249 |
+
"grad_norm": 0.05457012393686041,
|
2250 |
+
"learning_rate": 4.100719424460432e-05,
|
2251 |
+
"loss": 0.3018,
|
2252 |
+
"step": 261
|
2253 |
+
},
|
2254 |
+
{
|
2255 |
+
"epoch": 18.681818181818183,
|
2256 |
+
"grad_norm": 0.06038791796540329,
|
2257 |
+
"learning_rate": 3.884892086330935e-05,
|
2258 |
+
"loss": 0.2986,
|
2259 |
+
"step": 262
|
2260 |
+
},
|
2261 |
+
{
|
2262 |
+
"epoch": 18.75,
|
2263 |
+
"grad_norm": 0.06241037536661417,
|
2264 |
+
"learning_rate": 3.6690647482014384e-05,
|
2265 |
+
"loss": 0.2953,
|
2266 |
+
"step": 263
|
2267 |
+
},
|
2268 |
+
{
|
2269 |
+
"epoch": 18.818181818181817,
|
2270 |
+
"grad_norm": 0.05761967477758776,
|
2271 |
+
"learning_rate": 3.4532374100719424e-05,
|
2272 |
+
"loss": 0.3143,
|
2273 |
+
"step": 264
|
2274 |
+
},
|
2275 |
+
{
|
2276 |
+
"epoch": 18.886363636363637,
|
2277 |
+
"grad_norm": 0.04773105646476408,
|
2278 |
+
"learning_rate": 3.237410071942446e-05,
|
2279 |
+
"loss": 0.3,
|
2280 |
+
"step": 265
|
2281 |
+
},
|
2282 |
+
{
|
2283 |
+
"epoch": 18.886363636363637,
|
2284 |
+
"eval_loss": 0.42562136054039,
|
2285 |
+
"eval_runtime": 8.1704,
|
2286 |
+
"eval_samples_per_second": 42.226,
|
2287 |
+
"eval_steps_per_second": 1.346,
|
2288 |
+
"step": 265
|
2289 |
+
},
|
2290 |
+
{
|
2291 |
+
"epoch": 18.954545454545453,
|
2292 |
+
"grad_norm": 0.05304802530100474,
|
2293 |
+
"learning_rate": 3.0215827338129495e-05,
|
2294 |
+
"loss": 0.3146,
|
2295 |
+
"step": 266
|
2296 |
+
},
|
2297 |
+
{
|
2298 |
+
"epoch": 19.068181818181817,
|
2299 |
+
"grad_norm": 0.11178041712498074,
|
2300 |
+
"learning_rate": 2.805755395683453e-05,
|
2301 |
+
"loss": 0.6125,
|
2302 |
+
"step": 267
|
2303 |
+
},
|
2304 |
+
{
|
2305 |
+
"epoch": 19.136363636363637,
|
2306 |
+
"grad_norm": 0.049680005070011815,
|
2307 |
+
"learning_rate": 2.589928057553957e-05,
|
2308 |
+
"loss": 0.3159,
|
2309 |
+
"step": 268
|
2310 |
+
},
|
2311 |
+
{
|
2312 |
+
"epoch": 19.204545454545453,
|
2313 |
+
"grad_norm": 0.048495899020285456,
|
2314 |
+
"learning_rate": 2.3741007194244602e-05,
|
2315 |
+
"loss": 0.3172,
|
2316 |
+
"step": 269
|
2317 |
+
},
|
2318 |
+
{
|
2319 |
+
"epoch": 19.272727272727273,
|
2320 |
+
"grad_norm": 0.048247434372291474,
|
2321 |
+
"learning_rate": 2.158273381294964e-05,
|
2322 |
+
"loss": 0.3103,
|
2323 |
+
"step": 270
|
2324 |
+
},
|
2325 |
+
{
|
2326 |
+
"epoch": 19.272727272727273,
|
2327 |
+
"eval_loss": 0.4235503673553467,
|
2328 |
+
"eval_runtime": 8.2158,
|
2329 |
+
"eval_samples_per_second": 41.992,
|
2330 |
+
"eval_steps_per_second": 1.339,
|
2331 |
+
"step": 270
|
2332 |
+
},
|
2333 |
+
{
|
2334 |
+
"epoch": 19.34090909090909,
|
2335 |
+
"grad_norm": 0.049837604164487,
|
2336 |
+
"learning_rate": 1.9424460431654675e-05,
|
2337 |
+
"loss": 0.2942,
|
2338 |
+
"step": 271
|
2339 |
+
},
|
2340 |
+
{
|
2341 |
+
"epoch": 19.40909090909091,
|
2342 |
+
"grad_norm": 0.05561277734713341,
|
2343 |
+
"learning_rate": 1.7266187050359712e-05,
|
2344 |
+
"loss": 0.3152,
|
2345 |
+
"step": 272
|
2346 |
+
},
|
2347 |
+
{
|
2348 |
+
"epoch": 19.477272727272727,
|
2349 |
+
"grad_norm": 0.05196913144368247,
|
2350 |
+
"learning_rate": 1.5107913669064747e-05,
|
2351 |
+
"loss": 0.2934,
|
2352 |
+
"step": 273
|
2353 |
+
},
|
2354 |
+
{
|
2355 |
+
"epoch": 19.545454545454547,
|
2356 |
+
"grad_norm": 0.05024698288233137,
|
2357 |
+
"learning_rate": 1.2949640287769784e-05,
|
2358 |
+
"loss": 0.2979,
|
2359 |
+
"step": 274
|
2360 |
+
},
|
2361 |
+
{
|
2362 |
+
"epoch": 19.613636363636363,
|
2363 |
+
"grad_norm": 0.04805691901233123,
|
2364 |
+
"learning_rate": 1.079136690647482e-05,
|
2365 |
+
"loss": 0.2864,
|
2366 |
+
"step": 275
|
2367 |
+
},
|
2368 |
+
{
|
2369 |
+
"epoch": 19.613636363636363,
|
2370 |
+
"eval_loss": 0.4237270653247833,
|
2371 |
+
"eval_runtime": 8.2218,
|
2372 |
+
"eval_samples_per_second": 41.962,
|
2373 |
+
"eval_steps_per_second": 1.338,
|
2374 |
+
"step": 275
|
2375 |
+
},
|
2376 |
+
{
|
2377 |
+
"epoch": 19.681818181818183,
|
2378 |
+
"grad_norm": 0.05025210894045512,
|
2379 |
+
"learning_rate": 8.633093525179856e-06,
|
2380 |
+
"loss": 0.3108,
|
2381 |
+
"step": 276
|
2382 |
+
},
|
2383 |
+
{
|
2384 |
+
"epoch": 19.75,
|
2385 |
+
"grad_norm": 0.04740201360540707,
|
2386 |
+
"learning_rate": 6.474820143884892e-06,
|
2387 |
+
"loss": 0.2852,
|
2388 |
+
"step": 277
|
2389 |
+
},
|
2390 |
+
{
|
2391 |
+
"epoch": 19.818181818181817,
|
2392 |
+
"grad_norm": 0.04714028476982638,
|
2393 |
+
"learning_rate": 4.316546762589928e-06,
|
2394 |
+
"loss": 0.3031,
|
2395 |
+
"step": 278
|
2396 |
+
},
|
2397 |
+
{
|
2398 |
+
"epoch": 19.886363636363637,
|
2399 |
+
"grad_norm": 0.04653476509836857,
|
2400 |
+
"learning_rate": 2.158273381294964e-06,
|
2401 |
+
"loss": 0.2967,
|
2402 |
+
"step": 279
|
2403 |
+
},
|
2404 |
+
{
|
2405 |
+
"epoch": 19.954545454545453,
|
2406 |
+
"grad_norm": 0.04692162066560436,
|
2407 |
+
"learning_rate": 0.0,
|
2408 |
+
"loss": 0.3011,
|
2409 |
+
"step": 280
|
2410 |
+
},
|
2411 |
+
{
|
2412 |
+
"epoch": 19.954545454545453,
|
2413 |
+
"eval_loss": 0.42364996671676636,
|
2414 |
+
"eval_runtime": 8.1911,
|
2415 |
+
"eval_samples_per_second": 42.119,
|
2416 |
+
"eval_steps_per_second": 1.343,
|
2417 |
+
"step": 280
|
2418 |
+
}
|
2419 |
+
],
|
2420 |
+
"logging_steps": 1.0,
|
2421 |
+
"max_steps": 280,
|
2422 |
+
"num_input_tokens_seen": 0,
|
2423 |
+
"num_train_epochs": 20,
|
2424 |
+
"save_steps": 500,
|
2425 |
+
"stateful_callbacks": {
|
2426 |
+
"TrainerControl": {
|
2427 |
+
"args": {
|
2428 |
+
"should_epoch_stop": false,
|
2429 |
+
"should_evaluate": false,
|
2430 |
+
"should_log": false,
|
2431 |
+
"should_save": true,
|
2432 |
+
"should_training_stop": true
|
2433 |
+
},
|
2434 |
+
"attributes": {}
|
2435 |
+
}
|
2436 |
+
},
|
2437 |
+
"total_flos": 398679802380288.0,
|
2438 |
+
"train_batch_size": 8,
|
2439 |
+
"trial_name": null,
|
2440 |
+
"trial_params": null
|
2441 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbbf60ff069fd6b7ed1279ae9d4133d81b05fba776b1feaf076d18b61f0ac44a
|
3 |
+
size 7160
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|