enhance data preprocess script and readme file
Browse files- README.md +4 -3
- configs/inference.json +1 -2
- configs/metadata.json +2 -1
- configs/train.json +2 -2
- docs/README.md +4 -3
- scripts/data_process.py +4 -9
README.md
CHANGED
@@ -18,13 +18,13 @@ The datasets used in this work were provided by [Activ Surgical](https://www.act
|
|
18 |
We've provided a [link](https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/inbody_outbody_samples.zip) of 20 samples (10 in-body and 10 out-body) to show what this dataset looks like.
|
19 |
|
20 |
### Preprocessing
|
21 |
-
After downloading this dataset, python script in `scripts` folder
|
22 |
|
23 |
```
|
24 |
-
python scripts/data_process.py --datapath /path/to/data/root
|
25 |
```
|
26 |
|
27 |
-
|
28 |
|
29 |
The input label json should be a list made up by dicts which includes `image` and `label` keys. An example format is shown below.
|
30 |
|
@@ -116,6 +116,7 @@ python -m monai.bundle run evaluating \
|
|
116 |
--config_file configs/inference.json \
|
117 |
--logging_file configs/logging.conf
|
118 |
```
|
|
|
119 |
|
120 |
#### Export checkpoint to TorchScript file:
|
121 |
|
|
|
18 |
We've provided a [link](https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/inbody_outbody_samples.zip) of 20 samples (10 in-body and 10 out-body) to show what this dataset looks like.
|
19 |
|
20 |
### Preprocessing
|
21 |
+
After downloading this dataset, python script in `scripts` folder named `data_process` can be used to generate label json files by running the command below and modifying `datapath` to path of unziped downloaded data. Generated label json files will be stored in `label` folder under the bundle path.
|
22 |
|
23 |
```
|
24 |
+
python scripts/data_process.py --datapath /path/to/data/root
|
25 |
```
|
26 |
|
27 |
+
By default, label path parameter in `train.json` and `inference.json` of this bundle is point to the generated `label` folder under bundle path. If you move these generated label files to another place, please modify the `train_json`, `val_json` and `test_json` parameters specified in `configs/train.json` and `configs/inference.json` to where these label files are.
|
28 |
|
29 |
The input label json should be a list made up by dicts which includes `image` and `label` keys. An example format is shown below.
|
30 |
|
|
|
116 |
--config_file configs/inference.json \
|
117 |
--logging_file configs/logging.conf
|
118 |
```
|
119 |
+
The classification result of every images in `test.json` will be printed to the screen.
|
120 |
|
121 |
#### Export checkpoint to TorchScript file:
|
122 |
|
configs/inference.json
CHANGED
@@ -5,9 +5,8 @@
|
|
5 |
"$import torch"
|
6 |
],
|
7 |
"bundle_root": "/workspace/bundle/endoscopic_inbody_classification",
|
8 |
-
"output_dir": "$@bundle_root + '/eval'",
|
9 |
"dataset_dir": "/workspace/data/endoscopic_inbody_classification",
|
10 |
-
"test_json": "$@
|
11 |
"test_fp": "$open(@test_json,'r', encoding='utf8')",
|
12 |
"test_dict": "$json.load(@test_fp)",
|
13 |
"test_close": "$@test_fp.close()",
|
|
|
5 |
"$import torch"
|
6 |
],
|
7 |
"bundle_root": "/workspace/bundle/endoscopic_inbody_classification",
|
|
|
8 |
"dataset_dir": "/workspace/data/endoscopic_inbody_classification",
|
9 |
+
"test_json": "$@bundle_root+'/label/test_samples.json'",
|
10 |
"test_fp": "$open(@test_json,'r', encoding='utf8')",
|
11 |
"test_dict": "$json.load(@test_fp)",
|
12 |
"test_close": "$@test_fp.close()",
|
configs/metadata.json
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
|
3 |
-
"version": "0.3.
|
4 |
"changelog": {
|
|
|
5 |
"0.3.2": "restructure readme to match updated template",
|
6 |
"0.3.1": "add workflow, train loss and validation accuracy figures",
|
7 |
"0.3.0": "update dataset processing",
|
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
|
3 |
+
"version": "0.3.3",
|
4 |
"changelog": {
|
5 |
+
"0.3.3": "enhance data preprocess script and readme file",
|
6 |
"0.3.2": "restructure readme to match updated template",
|
7 |
"0.3.1": "add workflow, train loss and validation accuracy figures",
|
8 |
"0.3.0": "update dataset processing",
|
configs/train.json
CHANGED
@@ -8,8 +8,8 @@
|
|
8 |
"ckpt_dir": "$@bundle_root + '/models'",
|
9 |
"output_dir": "$@bundle_root + '/eval'",
|
10 |
"dataset_dir": "/workspace/data/endoscopic_inbody_classification",
|
11 |
-
"train_json": "$@
|
12 |
-
"val_json": "$@
|
13 |
"train_fp": "$open(@train_json,'r', encoding='utf8')",
|
14 |
"train_dict": "$json.load(@train_fp)",
|
15 |
"train_close": "$@train_fp.close()",
|
|
|
8 |
"ckpt_dir": "$@bundle_root + '/models'",
|
9 |
"output_dir": "$@bundle_root + '/eval'",
|
10 |
"dataset_dir": "/workspace/data/endoscopic_inbody_classification",
|
11 |
+
"train_json": "$@bundle_root+'/label/train_samples.json'",
|
12 |
+
"val_json": "$@bundle_root+'/label/val_samples.json'",
|
13 |
"train_fp": "$open(@train_json,'r', encoding='utf8')",
|
14 |
"train_dict": "$json.load(@train_fp)",
|
15 |
"train_close": "$@train_fp.close()",
|
docs/README.md
CHANGED
@@ -11,13 +11,13 @@ The datasets used in this work were provided by [Activ Surgical](https://www.act
|
|
11 |
We've provided a [link](https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/inbody_outbody_samples.zip) of 20 samples (10 in-body and 10 out-body) to show what this dataset looks like.
|
12 |
|
13 |
### Preprocessing
|
14 |
-
After downloading this dataset, python script in `scripts` folder
|
15 |
|
16 |
```
|
17 |
-
python scripts/data_process.py --datapath /path/to/data/root
|
18 |
```
|
19 |
|
20 |
-
|
21 |
|
22 |
The input label json should be a list made up by dicts which includes `image` and `label` keys. An example format is shown below.
|
23 |
|
@@ -109,6 +109,7 @@ python -m monai.bundle run evaluating \
|
|
109 |
--config_file configs/inference.json \
|
110 |
--logging_file configs/logging.conf
|
111 |
```
|
|
|
112 |
|
113 |
#### Export checkpoint to TorchScript file:
|
114 |
|
|
|
11 |
We've provided a [link](https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/inbody_outbody_samples.zip) of 20 samples (10 in-body and 10 out-body) to show what this dataset looks like.
|
12 |
|
13 |
### Preprocessing
|
14 |
+
After downloading this dataset, python script in `scripts` folder named `data_process` can be used to generate label json files by running the command below and modifying `datapath` to path of unziped downloaded data. Generated label json files will be stored in `label` folder under the bundle path.
|
15 |
|
16 |
```
|
17 |
+
python scripts/data_process.py --datapath /path/to/data/root
|
18 |
```
|
19 |
|
20 |
+
By default, label path parameter in `train.json` and `inference.json` of this bundle is point to the generated `label` folder under bundle path. If you move these generated label files to another place, please modify the `train_json`, `val_json` and `test_json` parameters specified in `configs/train.json` and `configs/inference.json` to where these label files are.
|
21 |
|
22 |
The input label json should be a list made up by dicts which includes `image` and `label` keys. An example format is shown below.
|
23 |
|
|
|
109 |
--config_file configs/inference.json \
|
110 |
--logging_file configs/logging.conf
|
111 |
```
|
112 |
+
The classification result of every images in `test.json` will be printed to the screen.
|
113 |
|
114 |
#### Export checkpoint to TorchScript file:
|
115 |
|
scripts/data_process.py
CHANGED
@@ -42,9 +42,9 @@ def generate_labels(data_path, output_path):
|
|
42 |
train_list = inbody_train_list + outbody_train_list
|
43 |
val_list = inbody_val_list + outbody_val_list
|
44 |
test_list = inbody_test_list + outbody_test_list
|
45 |
-
save_json(train_list, out_path, "
|
46 |
-
save_json(val_list, out_path, "
|
47 |
-
save_json(test_list, out_path, "
|
48 |
|
49 |
|
50 |
if __name__ == "__main__":
|
@@ -58,12 +58,7 @@ if __name__ == "__main__":
|
|
58 |
)
|
59 |
|
60 |
# path to save label json.
|
61 |
-
parser.add_argument(
|
62 |
-
"--outpath",
|
63 |
-
type=str,
|
64 |
-
default=r"/workspace/data/endoscopic_inbody_classification",
|
65 |
-
help="A path to save the onnx model.",
|
66 |
-
)
|
67 |
|
68 |
args = parser.parse_args()
|
69 |
data_path = args.datapath
|
|
|
42 |
train_list = inbody_train_list + outbody_train_list
|
43 |
val_list = inbody_val_list + outbody_val_list
|
44 |
test_list = inbody_test_list + outbody_test_list
|
45 |
+
save_json(train_list, out_path, "train_samples.json")
|
46 |
+
save_json(val_list, out_path, "val_samples.json")
|
47 |
+
save_json(test_list, out_path, "test_samples.json")
|
48 |
|
49 |
|
50 |
if __name__ == "__main__":
|
|
|
58 |
)
|
59 |
|
60 |
# path to save label json.
|
61 |
+
parser.add_argument("--outpath", type=str, default=r"./label", help="A path to save the onnx model.")
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
args = parser.parse_args()
|
64 |
data_path = args.datapath
|