monai
medical
File size: 2,612 Bytes
ac91715
 
9365d43
ac91715
9365d43
df412c9
da44a57
03e9921
 
 
ac91715
 
 
 
 
 
8297fac
 
ac91715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
{
    "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
    "version": "0.4.1",
    "changelog": {
        "0.4.1": "fix license Copyright error",
        "0.4.0": "add support for raw images",
        "0.3.0": "update license files",
        "0.2.0": "unify naming",
        "0.1.1": "add reference for LIDC dataset",
        "0.1.0": "complete the model package"
    },
    "monai_version": "0.9.1",
    "pytorch_version": "1.12.0",
    "numpy_version": "1.22.4",
    "optional_packages_version": {
        "nibabel": "4.0.1",
        "pytorch-ignite": "0.4.9",
        "torchvision": "0.13.0"
    },
    "task": "CT lung nodule detection",
    "description": "A pre-trained model for volumetric (3D) detection of the lung lesion from CT image on LUNA16 dataset",
    "authors": "MONAI team",
    "copyright": "Copyright (c) MONAI Consortium",
    "data_source": "https://luna16.grand-challenge.org/Home/",
    "data_type": "nibabel",
    "image_classes": "1 channel data, CT at 0.703125 x 0.703125 x 1.25 mm",
    "label_classes": "dict data, containing Nx6 box and Nx1 classification labels.",
    "pred_classes": "dict data, containing Nx6 box, Nx1 classification labels, Nx1 classification scores.",
    "eval_metrics": {
        "val_coco": 0,
        "froc": 0
    },
    "intended_use": "This is an example, not to be used for diagnostic purposes",
    "references": [
        "Lin, Tsung-Yi, et al. 'Focal loss for dense object detection. ICCV 2017"
    ],
    "network_data_format": {
        "inputs": {
            "image": {
                "type": "image",
                "format": "magnitude",
                "modality": "CT",
                "num_channels": 1,
                "spatial_shape": [
                    "16*n",
                    "16*n",
                    "8*n"
                ],
                "dtype": "float16",
                "value_range": [
                    0,
                    1
                ],
                "is_patch_data": true,
                "channel_def": {
                    "0": "image"
                }
            }
        },
        "outputs": {
            "pred": {
                "type": "object",
                "format": "dict",
                "dtype": "float16",
                "num_channels": 1,
                "spatial_shape": [
                    "n",
                    "n",
                    "n"
                ],
                "value_range": [
                    -10000,
                    10000
                ]
            }
        }
    }
}