File size: 2,612 Bytes
ac91715 9365d43 ac91715 9365d43 df412c9 da44a57 03e9921 ac91715 8297fac ac91715 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
{
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
"version": "0.4.1",
"changelog": {
"0.4.1": "fix license Copyright error",
"0.4.0": "add support for raw images",
"0.3.0": "update license files",
"0.2.0": "unify naming",
"0.1.1": "add reference for LIDC dataset",
"0.1.0": "complete the model package"
},
"monai_version": "0.9.1",
"pytorch_version": "1.12.0",
"numpy_version": "1.22.4",
"optional_packages_version": {
"nibabel": "4.0.1",
"pytorch-ignite": "0.4.9",
"torchvision": "0.13.0"
},
"task": "CT lung nodule detection",
"description": "A pre-trained model for volumetric (3D) detection of the lung lesion from CT image on LUNA16 dataset",
"authors": "MONAI team",
"copyright": "Copyright (c) MONAI Consortium",
"data_source": "https://luna16.grand-challenge.org/Home/",
"data_type": "nibabel",
"image_classes": "1 channel data, CT at 0.703125 x 0.703125 x 1.25 mm",
"label_classes": "dict data, containing Nx6 box and Nx1 classification labels.",
"pred_classes": "dict data, containing Nx6 box, Nx1 classification labels, Nx1 classification scores.",
"eval_metrics": {
"val_coco": 0,
"froc": 0
},
"intended_use": "This is an example, not to be used for diagnostic purposes",
"references": [
"Lin, Tsung-Yi, et al. 'Focal loss for dense object detection. ICCV 2017"
],
"network_data_format": {
"inputs": {
"image": {
"type": "image",
"format": "magnitude",
"modality": "CT",
"num_channels": 1,
"spatial_shape": [
"16*n",
"16*n",
"8*n"
],
"dtype": "float16",
"value_range": [
0,
1
],
"is_patch_data": true,
"channel_def": {
"0": "image"
}
}
},
"outputs": {
"pred": {
"type": "object",
"format": "dict",
"dtype": "float16",
"num_channels": 1,
"spatial_shape": [
"n",
"n",
"n"
],
"value_range": [
-10000,
10000
]
}
}
}
}
|