monai
medical
File size: 4,038 Bytes
ac91715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6cc1e0
ac91715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da44a57
ac91715
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#     http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
This script is adapted from
https://github.com/ildoonet/pytorch-gradual-warmup-lr/blob/master/warmup_scheduler/scheduler.py
"""

from torch.optim.lr_scheduler import ReduceLROnPlateau, _LRScheduler


class GradualWarmupScheduler(_LRScheduler):
    """Gradually warm-up(increasing) learning rate in optimizer.
    Proposed in 'Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour'.

    Args:
        optimizer (Optimizer): Wrapped optimizer.
        multiplier: target learning rate = base lr * multiplier if multiplier > 1.0.
            if multiplier = 1.0, lr starts from 0 and ends up with the base_lr.
        total_epoch: target learning rate is reached at total_epoch, gradually
        after_scheduler: after target_epoch, use this scheduler(eg. ReduceLROnPlateau)
    """

    def __init__(self, optimizer, multiplier, total_epoch, after_scheduler=None):
        self.multiplier = multiplier
        if self.multiplier < 1.0:
            raise ValueError("multiplier should be greater thant or equal to 1.")
        self.total_epoch = total_epoch
        self.after_scheduler = after_scheduler
        self.finished = False
        super(GradualWarmupScheduler, self).__init__(optimizer)

    def get_lr(self):
        self.last_epoch = max(1, self.last_epoch)  # to avoid epoch=0 thus lr=0
        if self.last_epoch > self.total_epoch:
            if self.after_scheduler:
                if not self.finished:
                    self.after_scheduler.base_lrs = [base_lr * self.multiplier for base_lr in self.base_lrs]
                    self.finished = True
                return self.after_scheduler.get_last_lr()
            return [base_lr * self.multiplier for base_lr in self.base_lrs]

        if self.multiplier == 1.0:
            return [base_lr * (float(self.last_epoch) / self.total_epoch) for base_lr in self.base_lrs]
        else:
            return [
                base_lr * ((self.multiplier - 1.0) * self.last_epoch / self.total_epoch + 1.0)
                for base_lr in self.base_lrs
            ]

    def step_reduce_lr_on_plateau(self, metrics, epoch=None):
        if epoch is None:
            epoch = self.last_epoch + 1
        self.last_epoch = (
            epoch if epoch != 0 else 1
        )  # ReduceLROnPlateau is called at the end of epoch, whereas others are called at beginning
        if self.last_epoch <= self.total_epoch:
            warmup_lr = [
                base_lr * ((self.multiplier - 1.0) * self.last_epoch / self.total_epoch + 1.0)
                for base_lr in self.base_lrs
            ]
            for param_group, lr in zip(self.optimizer.param_groups, warmup_lr):
                param_group["lr"] = lr
        else:
            if epoch is None:
                self.after_scheduler.step(metrics, None)
            else:
                self.after_scheduler.step(metrics, epoch - self.total_epoch)

    def step(self, epoch=None, metrics=None):
        if not isinstance(self.after_scheduler, ReduceLROnPlateau):
            if self.finished and self.after_scheduler:
                if epoch is None:
                    self.after_scheduler.step(None)
                else:
                    self.after_scheduler.step(epoch - self.total_epoch)
                self._last_lr = self.after_scheduler.get_last_lr()
            else:
                return super(GradualWarmupScheduler, self).step(epoch)
        else:
            self.step_reduce_lr_on_plateau(metrics, epoch)