{ "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json", "version": "0.5.9", "changelog": { "0.5.9": "use monai 1.2.0", "0.5.8": "update TRT memory requirement in readme", "0.5.7": "add dataset dir example", "0.5.6": "add the ONNX-TensorRT way of model conversion", "0.5.5": "update retrained validation results and training curve", "0.5.4": "add non-deterministic note", "0.5.3": "adapt to BundleWorkflow interface", "0.5.2": "black autofix format and add name tag", "0.5.1": "modify dataset key name", "0.5.0": "use detection inferer", "0.4.5": "fixed some small changes with formatting in readme", "0.4.4": "add data resource to readme", "0.4.3": "update val patch size to avoid warning in monai 1.0.1", "0.4.2": "update to use monai 1.0.1", "0.4.1": "fix license Copyright error", "0.4.0": "add support for raw images", "0.3.0": "update license files", "0.2.0": "unify naming", "0.1.1": "add reference for LIDC dataset", "0.1.0": "complete the model package" }, "monai_version": "1.2.0", "pytorch_version": "1.13.1", "numpy_version": "1.22.2", "optional_packages_version": { "nibabel": "4.0.1", "pytorch-ignite": "0.4.9", "torchvision": "0.14.1" }, "name": "Lung nodule CT detection", "task": "CT lung nodule detection", "description": "A pre-trained model for volumetric (3D) detection of the lung lesion from CT image on LUNA16 dataset", "authors": "MONAI team", "copyright": "Copyright (c) MONAI Consortium", "data_source": "https://luna16.grand-challenge.org/Home/", "data_type": "nibabel", "image_classes": "1 channel data, CT at 0.703125 x 0.703125 x 1.25 mm", "label_classes": "dict data, containing Nx6 box and Nx1 classification labels.", "pred_classes": "dict data, containing Nx6 box, Nx1 classification labels, Nx1 classification scores.", "eval_metrics": { "mAP_IoU_0.10_0.50_0.05_MaxDet_100": 0.852, "AP_IoU_0.10_MaxDet_100": 0.858, "mAR_IoU_0.10_0.50_0.05_MaxDet_100": 0.998, "AR_IoU_0.10_MaxDet_100": 1.0 }, "intended_use": "This is an example, not to be used for diagnostic purposes", "references": [ "Lin, Tsung-Yi, et al. 'Focal loss for dense object detection. ICCV 2017" ], "network_data_format": { "inputs": { "image": { "type": "image", "format": "magnitude", "modality": "CT", "num_channels": 1, "spatial_shape": [ "16*n", "16*n", "8*n" ], "dtype": "float16", "value_range": [ 0, 1 ], "is_patch_data": true, "channel_def": { "0": "image" } } }, "outputs": { "pred": { "type": "object", "format": "dict", "dtype": "float16", "num_channels": 1, "spatial_shape": [ "n", "n", "n" ], "value_range": [ -10000, 10000 ] } } } }