monai
medical
valve_landmarks / scripts /valve_landmarks.py
katielink's picture
Initial version
2a6977a
raw
history blame
11.3 kB
# Copyright (c) 2022 Eric Kerfoot under MIT license, see license.txt
import os
from typing import Any, Callable, Sequence
import monai
import monai.transforms as mt
import numpy as np
import torch
import torch.nn as nn
from monai.data.meta_obj import get_track_meta
from monai.networks.blocks import ConvDenseBlock, Convolution
from monai.networks.layers import Flatten, Reshape
from monai.networks.nets import Regressor
from monai.networks.utils import meshgrid_ij
from monai.utils import CommonKeys
from monai.utils import ImageMetaKey as Key
from monai.utils import convert_to_numpy, convert_to_tensor
# relates the label in training images to index of landmark point
LM_INDICES = {
10: 0, # mitral anterior 2CH
15: 1, # mitral posterior 2CH
20: 2, # mitral septal 3CH
25: 3, # mitral free wall 3CH
30: 4, # mitral septal 4CH
35: 5, # mitral free wall 4CH
100: 6, # aortic septal
150: 7, # aortic free wall
200: 8, # tricuspid septal
250: 9, # tricuspid free wall
}
output_trans = monai.handlers.from_engine(["pred", "label"])
def _output_lm_trans(data):
pred, label = output_trans(data)
return [p.permute(1, 0) for p in pred], [l.permute(1, 0) for l in label]
def convert_lm_image_t(lm_image):
"""Convert a landmark image into a (2,N) tensor of landmark coordinates."""
lmarray = torch.zeros((2, len(LM_INDICES)), dtype=torch.float32).to(lm_image.device)
for _, y, x in np.argwhere(lm_image.cpu().numpy() != 0):
im_id = int(lm_image[0, y, x])
lm_index = LM_INDICES[im_id]
lmarray[0, lm_index] = y
lmarray[1, lm_index] = x
return lmarray
class ParallelCat(nn.Module):
"""
Apply the same input to each of the given modules and concatenate their results together.
Args:
catmodules: sequence of nn.Module objects to apply inputs to
cat_dim: dimension to concatenate along when combining outputs
"""
def __init__(self, catmodules: Sequence[nn.Module], cat_dim: int = 1):
super().__init__()
self.cat_dim = cat_dim
for i, s in enumerate(catmodules):
self.add_module(f"catmodule_{i}", s)
def forward(self, x):
tensors = [s(x) for s in self.children()]
return torch.cat(tensors, self.cat_dim)
class PointRegressor(Regressor):
"""Regressor defined as a sequence of dense blocks followed by convolution/linear layers for each landmark."""
def _get_layer(self, in_channels, out_channels, strides, is_last):
dout = out_channels - in_channels
dilations = [1, 2, 4]
dchannels = [dout // 3, dout // 3, dout // 3 + dout % 3]
db = ConvDenseBlock(
spatial_dims=self.dimensions,
in_channels=in_channels,
channels=dchannels,
dilations=dilations,
kernel_size=self.kernel_size,
num_res_units=self.num_res_units,
act=self.act,
norm=self.norm,
dropout=self.dropout,
bias=self.bias,
)
conv = Convolution(
spatial_dims=self.dimensions,
in_channels=out_channels,
out_channels=out_channels,
strides=strides,
kernel_size=self.kernel_size,
act=self.act,
norm=self.norm,
dropout=self.dropout,
bias=self.bias,
conv_only=is_last,
)
return nn.Sequential(db, conv)
def _get_final_layer(self, in_shape):
point_paths = []
for _ in range(self.out_shape[1]):
conv = Convolution(
spatial_dims=self.dimensions,
in_channels=in_shape[0],
out_channels=in_shape[0] * 2,
strides=2,
kernel_size=self.kernel_size,
act=self.act,
norm=self.norm,
dropout=self.dropout,
conv_only=True,
)
linear = nn.Linear(int(np.product(in_shape)) // 2, self.out_shape[0])
point_paths.append(nn.Sequential(conv, Flatten(), linear))
return torch.nn.Sequential(ParallelCat(point_paths), Reshape(*self.out_shape))
class LandmarkInferer(monai.inferers.Inferer):
"""Applies inference on 2D slices from 3D volumes."""
def __init__(self, spatial_dim=0, stack_dim=-1):
self.spatial_dim = spatial_dim
self.stack_dim = stack_dim
def __call__(self, inputs: torch.Tensor, network: Callable[..., torch.Tensor], *args: Any, **kwargs: Any):
if inputs.ndim != 5:
raise ValueError(f"Input volume to inferer must have shape BCDHW, input shape is {inputs.shape}")
results = []
input_slices = [slice(None) for _ in range(inputs.ndim)]
for idx in range(inputs.shape[self.spatial_dim + 2]):
input_slices[self.spatial_dim + 2] = idx
input_2d = inputs[input_slices] # BCDHW -> BCHW by iterating over one of DHW
result = network(input_2d, *args, **kwargs)
results.append(result)
result = torch.stack(results, self.stack_dim)
return result
class NpySaverd(mt.MapTransform):
"""Saves tensors/arrays to Numpy npy files."""
def __init__(self, keys, output_dir, data_root_dir):
super().__init__(keys)
self.output_dir = output_dir
self.data_root_dir = data_root_dir
self.folder_layout = monai.data.FolderLayout(
self.output_dir, extension=".npy", data_root_dir=self.data_root_dir
)
def __call__(self, d):
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir, exist_ok=True)
for key in self.key_iterator(d):
orig_filename = d[key].meta[Key.FILENAME_OR_OBJ]
if isinstance(orig_filename, (list, tuple)):
orig_filename = orig_filename[0]
out_filename = self.folder_layout.filename(orig_filename, key=key)
np.save(out_filename, convert_to_numpy(d[key]))
return d
class FourierDropout(mt.Transform, mt.Fourier):
"""
Apply dropout in Fourier space to corrupt images. This works by zeroing out pixels with greater probability the
farther from the centre they are. All pixels closer than `min_dist` to the center are preserved, all beyond
`max_dist` become 0. Distances from the centre to an edge in a given dimension are defined as 1.0.
Args:
min_dist: minimum distance to apply dropout, must be >0, smaller values will cause greater corruption
max_dist: maximal distance to apply dropout, must be greater than `min_dist`, all pixels beyond become 0
"""
def __init__(self, min_dist: float = 0.1, max_dist: float = 0.9):
super().__init__()
self.min_dist = min_dist
self.max_dist = max_dist
self.prob_field = None
self.field_shape = None
def _get_prob_field(self, shape):
shape = tuple(shape)
if shape != self.field_shape:
self.field_shape = shape
spaces = [torch.linspace(-1, 1, s) for s in shape[1:]]
grids = meshgrid_ij(*spaces)
# middle is 0, mid edges 1, corners sqrt(2)
self.prob_field = torch.stack(grids).pow_(2).sum(axis=0).sqrt_()
return self.prob_field
def __call__(self, im):
probfield = self._get_prob_field(im.shape).to(im.device)
# rand range from min_dist to max_dist
dropout = torch.rand_like(im).mul_(self.max_dist - self.min_dist).add_(self.min_dist)
# keep pixel if dropout value is greater than distance from center, so less likely farther from center
dropout = dropout.ge_(probfield)
result = self.shift_fourier(im, im.ndim - 1)
result.mul_(dropout)
result = self.inv_shift_fourier(result, im.ndim - 1)
return convert_to_tensor(result, track_meta=get_track_meta())
class RandFourierDropout(mt.RandomizableTransform):
def __init__(self, min_dist=0.1, max_dist=0.9, prob=0.1):
mt.RandomizableTransform.__init__(self, prob)
self.dropper = FourierDropout(min_dist, max_dist)
def __call__(self, im, randomize: bool = True):
if randomize:
self.randomize(None)
if self._do_transform:
im = self.dropper(im)
else:
im = convert_to_tensor(im, track_meta=get_track_meta())
return im
class RandFourierDropoutd(mt.RandomizableTransform, mt.MapTransform):
def __init__(self, keys, min_dist=0.1, max_dist=0.9, prob=0.1):
mt.RandomizableTransform.__init__(self, prob)
mt.MapTransform.__init__(self, keys)
self.dropper = FourierDropout(min_dist, max_dist)
def __call__(self, data, randomize: bool = True):
d = dict(data)
if randomize:
self.randomize(None)
for key in self.key_iterator(d):
if self._do_transform:
d[key] = self.dropper(d[key])
else:
d[key] = convert_to_tensor(d[key], track_meta=get_track_meta())
return d
class RandImageLMDeformd(mt.RandSmoothDeform):
"""Apply smooth random deformation to the image and landmark locations."""
def __call__(self, d):
d = dict(d)
old_label = d[CommonKeys.LABEL]
new_label = torch.zeros_like(old_label)
d[CommonKeys.IMAGE] = super().__call__(d[CommonKeys.IMAGE])
if self._do_transform:
field = self.sfield()
labels = np.argwhere(d[CommonKeys.LABEL][0].cpu().numpy() > 0)
# moving the landmarks this way prevents losing some to
# interpolation errors if deformation were applied the landmark image
for y, x in labels:
dy = int(field[0, y, x] * new_label.shape[1] / 2)
dx = int(field[1, y, x] * new_label.shape[2] / 2)
new_label[:, y - dy, x - dx] = old_label[:, y, x]
d[CommonKeys.LABEL] = new_label
return d
class RandLMShiftd(mt.RandomizableTransform, mt.MapTransform):
"""Randomly shift the image and landmark image in either direction in integer amounts."""
def __init__(self, keys, spatial_size, max_shift=0, prob=0.1):
mt.RandomizableTransform.__init__(self, prob=prob)
mt.MapTransform.__init__(self, keys=keys)
self.spatial_size = tuple(spatial_size)
self.max_shift = max_shift
self.padder = mt.BorderPad(self.max_shift)
self.unpadder = mt.CenterSpatialCrop(self.spatial_size)
self.shift = (0,) * len(self.spatial_size)
self.roll_dims = list(range(1, len(self.spatial_size) + 1))
def randomize(self, data):
super().randomize(None)
if self._do_transform:
rs = torch.randint(-self.max_shift, self.max_shift, (len(self.spatial_size),), dtype=torch.int32)
self.shift = tuple(rs.tolist())
def __call__(self, d, randomize: bool = True):
d = dict(d)
if randomize:
self.randomize(None)
if self._do_transform:
for key in self.key_iterator(d):
imp = self.padder(d[key])
ims = torch.roll(imp, self.shift, self.roll_dims) # prevents interpolation of landmark image
d[key] = self.unpadder(ims)
return d