monai
medical
katielink commited on
Commit
93258ef
·
1 Parent(s): 23bd216

Update to scripts

Browse files
README.md CHANGED
@@ -46,11 +46,11 @@ The dataset used for training unfortunately cannot be made public, however the t
46
  * 200: Tricuspid septal
47
  * 250: Tricuspid free wall
48
 
49
- The following command will train with the default NPZ filename `./valvelandmarks.npz`:
50
 
51
  ```sh
52
- PYTHONPATH=./scripts python -m monai.bundle run training --meta_file configs/metadata.json \
53
- --config_file configs/train.json --bundle_root . --dataset_file /path/to/data --output_dir /path/to/outputs
54
  ```
55
 
56
  ## Inference
@@ -58,11 +58,11 @@ PYTHONPATH=./scripts python -m monai.bundle run training --meta_file configs/met
58
  The included `inference.json` script will run inference on a directory containing Nifti files whose images have shape `(256, 256, 1, N)` for `N` timesteps. For each image the output in the `output_dir` directory will be a npy file containing a result array of shape `(N, 2, 10)` storing the 10 coordinates for each `N` timesteps. Invoking this script can be done as follows, assuming the current directory is the bundle directory:
59
 
60
  ```sh
61
- PYTHONPATH=./scripts python -m monai.bundle run evaluating --meta_file configs/metadata.json \
62
- --config_file configs/inference.json --bundle_root . --dataset_dir /path/to/data --output_dir /path/to/outputs
63
  ```
64
 
65
- It is important to set the `PYTHONPATH` variable since code in the provided scripts directory is necessary for inference. The provided test Nifti file can be placed in a directory which is then used as the `dataset_dir` value. This image was derived from [the AMRG Cardiac Atlas dataset](http://www.cardiacatlas.org/studies/amrg-cardiac-atlas) (AMRG Cardiac Atlas, Auckland MRI Research Group, Auckland, New Zealand). The results from this inference can be visualised by changing path values in [view_results.ipynb](./view_results.ipynb).
66
 
67
 
68
  ### Reference
 
46
  * 200: Tricuspid septal
47
  * 250: Tricuspid free wall
48
 
49
+ The following command will train with the default NPZ filename `./valvelandmarks.npz`, assuming the current directory is the bundle directory:
50
 
51
  ```sh
52
+ python -m monai.bundle run training --meta_file configs/metadata.json --config_file "['configs/train.json', 'configs/common.json']" \
53
+ --bundle_root . --dataset_file ./valvelandmarks.npz --output_dir /path/to/outputs
54
  ```
55
 
56
  ## Inference
 
58
  The included `inference.json` script will run inference on a directory containing Nifti files whose images have shape `(256, 256, 1, N)` for `N` timesteps. For each image the output in the `output_dir` directory will be a npy file containing a result array of shape `(N, 2, 10)` storing the 10 coordinates for each `N` timesteps. Invoking this script can be done as follows, assuming the current directory is the bundle directory:
59
 
60
  ```sh
61
+ python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file "['configs/inference.json', 'configs/common.json']" \
62
+ --bundle_root . --dataset_dir /path/to/data --output_dir /path/to/outputs
63
  ```
64
 
65
+ The provided test Nifti file can be placed in a directory which is then used as the `dataset_dir` value. This image was derived from [the AMRG Cardiac Atlas dataset](http://www.cardiacatlas.org/studies/amrg-cardiac-atlas) (AMRG Cardiac Atlas, Auckland MRI Research Group, Auckland, New Zealand). The results from this inference can be visualised by changing path values in [view_results.ipynb](./view_results.ipynb).
66
 
67
 
68
  ### Reference
configs/inference.json CHANGED
@@ -2,11 +2,12 @@
2
  "imports": [
3
  "$import os",
4
  "$import glob",
 
5
  "$import scripts"
6
  ],
7
  "bundle_root": ".",
8
- "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
9
  "ckpt_path": "$@bundle_root + '/models/model.pt'",
 
10
  "dataset_dir": "/workspace/data",
11
  "datalist": "$list(sorted(glob.glob(@dataset_dir + '/*.nii*')))",
12
  "output_dir": "./output",
 
2
  "imports": [
3
  "$import os",
4
  "$import glob",
5
+ "$import torch",
6
  "$import scripts"
7
  ],
8
  "bundle_root": ".",
 
9
  "ckpt_path": "$@bundle_root + '/models/model.pt'",
10
+ "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
11
  "dataset_dir": "/workspace/data",
12
  "datalist": "$list(sorted(glob.glob(@dataset_dir + '/*.nii*')))",
13
  "output_dir": "./output",
configs/metadata.json CHANGED
@@ -1,11 +1,12 @@
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220729.json",
3
- "version": "0.2.0",
4
  "changelog": {
5
- "0.2.0": "unify naming",
 
6
  "0.1.0": "Initial version"
7
  },
8
- "monai_version": "1.0.0rc1",
9
  "pytorch_version": "1.10.2",
10
  "numpy_version": "1.21.2",
11
  "optional_packages_version": {},
 
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220729.json",
3
+ "version": "0.3.0",
4
  "changelog": {
5
+ "0.3.0": "Update to scripts",
6
+ "0.2.0": "Unify naming",
7
  "0.1.0": "Initial version"
8
  },
9
+ "monai_version": "1.0.0",
10
  "pytorch_version": "1.10.2",
11
  "numpy_version": "1.21.2",
12
  "optional_packages_version": {},
configs/train.json CHANGED
@@ -1,15 +1,21 @@
1
  {
2
  "imports": [
3
  "$import datetime",
4
- "$import numpy as np",
5
  "$import torch",
6
  "$import ignite",
7
  "$import scripts"
8
  ],
9
  "bundle_root": ".",
10
- "val_interval": 1,
11
- "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
12
  "ckpt_path": "$@bundle_root + '/models/model.pt'",
 
 
 
 
 
 
 
 
13
  "dataset_file": "./valvelandmarks.npz",
14
  "output_dir": "$datetime.datetime.now().strftime('./results/output_%y%m%d_%H%M%S')",
15
  "network_def": {
@@ -56,7 +62,7 @@
56
  "_target_": "EnsureTyped",
57
  "keys": "@both_keys",
58
  "data_type": "numpy",
59
- "dtype": "$(np.float32, np.int32)"
60
  },
61
  {
62
  "_target_": "EnsureTyped",
@@ -147,7 +153,7 @@
147
  "_target_": "EnsureTyped",
148
  "keys": "@both_keys",
149
  "data_type": "numpy",
150
- "dtype": "$(np.float32, np.int32)"
151
  },
152
  {
153
  "_target_": "EnsureTyped",
@@ -186,10 +192,6 @@
186
  },
187
  "transform": "@eval_transforms"
188
  },
189
- "num_iters": 400,
190
- "batch_size": 600,
191
- "num_epochs": 100,
192
- "num_substeps": 3,
193
  "sampler": {
194
  "_target_": "torch.utils.data.WeightedRandomSampler",
195
  "weights": "$torch.ones(len(@train_dataset))",
@@ -201,14 +203,14 @@
201
  "dataset": "@train_dataset",
202
  "batch_size": "@batch_size",
203
  "repeats": "@num_substeps",
204
- "num_workers": 8,
205
  "sampler": "@sampler"
206
  },
207
  "eval_dataloader": {
208
  "_target_": "DataLoader",
209
  "dataset": "@eval_dataset",
210
  "batch_size": "@batch_size",
211
- "num_workers": 8
212
  },
213
  "lossfn": {
214
  "_target_": "torch.nn.L1Loss"
@@ -216,7 +218,7 @@
216
  "optimizer": {
217
  "_target_": "torch.optim.Adam",
218
  "params": "[email protected]()",
219
- "lr": 0.0001
220
  },
221
  "evaluator": {
222
  "_target_": "SupervisedEvaluator",
 
1
  {
2
  "imports": [
3
  "$import datetime",
4
+ "$import numpy",
5
  "$import torch",
6
  "$import ignite",
7
  "$import scripts"
8
  ],
9
  "bundle_root": ".",
 
 
10
  "ckpt_path": "$@bundle_root + '/models/model.pt'",
11
+ "device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
12
+ "val_interval": 1,
13
+ "num_iters": 400,
14
+ "batch_size": 600,
15
+ "num_epochs": 100,
16
+ "num_substeps": 3,
17
+ "learning_rate": 0.0001,
18
+ "num_workers": 8,
19
  "dataset_file": "./valvelandmarks.npz",
20
  "output_dir": "$datetime.datetime.now().strftime('./results/output_%y%m%d_%H%M%S')",
21
  "network_def": {
 
62
  "_target_": "EnsureTyped",
63
  "keys": "@both_keys",
64
  "data_type": "numpy",
65
+ "dtype": "$(numpy.float32, numpy.int32)"
66
  },
67
  {
68
  "_target_": "EnsureTyped",
 
153
  "_target_": "EnsureTyped",
154
  "keys": "@both_keys",
155
  "data_type": "numpy",
156
+ "dtype": "$(numpy.float32, numpy.int32)"
157
  },
158
  {
159
  "_target_": "EnsureTyped",
 
192
  },
193
  "transform": "@eval_transforms"
194
  },
 
 
 
 
195
  "sampler": {
196
  "_target_": "torch.utils.data.WeightedRandomSampler",
197
  "weights": "$torch.ones(len(@train_dataset))",
 
203
  "dataset": "@train_dataset",
204
  "batch_size": "@batch_size",
205
  "repeats": "@num_substeps",
206
+ "num_workers": "@num_workers",
207
  "sampler": "@sampler"
208
  },
209
  "eval_dataloader": {
210
  "_target_": "DataLoader",
211
  "dataset": "@eval_dataset",
212
  "batch_size": "@batch_size",
213
+ "num_workers": "@num_workers"
214
  },
215
  "lossfn": {
216
  "_target_": "torch.nn.L1Loss"
 
218
  "optimizer": {
219
  "_target_": "torch.optim.Adam",
220
  "params": "[email protected]()",
221
+ "lr": "@learning_rate"
222
  },
223
  "evaluator": {
224
  "_target_": "SupervisedEvaluator",
docs/README.md CHANGED
@@ -39,11 +39,11 @@ The dataset used for training unfortunately cannot be made public, however the t
39
  * 200: Tricuspid septal
40
  * 250: Tricuspid free wall
41
 
42
- The following command will train with the default NPZ filename `./valvelandmarks.npz`:
43
 
44
  ```sh
45
- PYTHONPATH=./scripts python -m monai.bundle run training --meta_file configs/metadata.json \
46
- --config_file configs/train.json --bundle_root . --dataset_file /path/to/data --output_dir /path/to/outputs
47
  ```
48
 
49
  ## Inference
@@ -51,11 +51,11 @@ PYTHONPATH=./scripts python -m monai.bundle run training --meta_file configs/met
51
  The included `inference.json` script will run inference on a directory containing Nifti files whose images have shape `(256, 256, 1, N)` for `N` timesteps. For each image the output in the `output_dir` directory will be a npy file containing a result array of shape `(N, 2, 10)` storing the 10 coordinates for each `N` timesteps. Invoking this script can be done as follows, assuming the current directory is the bundle directory:
52
 
53
  ```sh
54
- PYTHONPATH=./scripts python -m monai.bundle run evaluating --meta_file configs/metadata.json \
55
- --config_file configs/inference.json --bundle_root . --dataset_dir /path/to/data --output_dir /path/to/outputs
56
  ```
57
 
58
- It is important to set the `PYTHONPATH` variable since code in the provided scripts directory is necessary for inference. The provided test Nifti file can be placed in a directory which is then used as the `dataset_dir` value. This image was derived from [the AMRG Cardiac Atlas dataset](http://www.cardiacatlas.org/studies/amrg-cardiac-atlas) (AMRG Cardiac Atlas, Auckland MRI Research Group, Auckland, New Zealand). The results from this inference can be visualised by changing path values in [view_results.ipynb](./view_results.ipynb).
59
 
60
 
61
  ### Reference
 
39
  * 200: Tricuspid septal
40
  * 250: Tricuspid free wall
41
 
42
+ The following command will train with the default NPZ filename `./valvelandmarks.npz`, assuming the current directory is the bundle directory:
43
 
44
  ```sh
45
+ python -m monai.bundle run training --meta_file configs/metadata.json --config_file "['configs/train.json', 'configs/common.json']" \
46
+ --bundle_root . --dataset_file ./valvelandmarks.npz --output_dir /path/to/outputs
47
  ```
48
 
49
  ## Inference
 
51
  The included `inference.json` script will run inference on a directory containing Nifti files whose images have shape `(256, 256, 1, N)` for `N` timesteps. For each image the output in the `output_dir` directory will be a npy file containing a result array of shape `(N, 2, 10)` storing the 10 coordinates for each `N` timesteps. Invoking this script can be done as follows, assuming the current directory is the bundle directory:
52
 
53
  ```sh
54
+ python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file "['configs/inference.json', 'configs/common.json']" \
55
+ --bundle_root . --dataset_dir /path/to/data --output_dir /path/to/outputs
56
  ```
57
 
58
+ The provided test Nifti file can be placed in a directory which is then used as the `dataset_dir` value. This image was derived from [the AMRG Cardiac Atlas dataset](http://www.cardiacatlas.org/studies/amrg-cardiac-atlas) (AMRG Cardiac Atlas, Auckland MRI Research Group, Auckland, New Zealand). The results from this inference can be visualised by changing path values in [view_results.ipynb](./view_results.ipynb).
59
 
60
 
61
  ### Reference
scripts/__init__.py CHANGED
@@ -0,0 +1 @@
 
 
1
+ from . import valve_landmarks