File size: 1,971 Bytes
a24bcd5 f433ef9 3c3432f a24bcd5 f433ef9 f70ac82 f433ef9 f70ac82 f433ef9 f70ac82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
license: apache-2.0
language:
- ar
- hi
- id
pipeline_tag: text-generation
tags:
- multilingual
widget:
- text: 'في مدرستي السابقة'
example_title: Arabic prompt
- text: 'आप समुद्री लुटेरों के बारे में क्या जानते हैं?'
example_title: Hindi prompt
- text: 'Kucing saya suka'
example_title: Indonesian prompt
---
# mGPT-quantized
The concept: 8-bit quantized version of [mGPT](https://huggingface.co/ai-forever/mGPT), a 1.3B param model released by AI-Forever / Sberbank AI in April 2022.
On the GPT scale, it is a similar # of parameters to GPT2-XL, but on 60+ languages.
AI-Forever also released a 13B-parameter model. I made an 8-bit quantized version with weights available here: https://huggingface.co/monsoon-nlp/mGPT-13B-quantized
My goal is to evaluate this on Arabic, Hindi, and Indonesian tasks, where there are fewer autoregressive language models in this size range.
For English: use a GPT model or LLaMa2-7B
In August 2023 [AI-Forever](https://huggingface.co/ai-forever) added 1.3B-param models for about 1/3 of the model's languages. If your language is Mongolian, for example, use mGPT-1.3B-mongol and not this one.
## How was the model created?
Quantization of mGPT 1.3B was done using `bitsandbytes` library:
```python
from transformers import BitsAndBytesConfig, GPT2LMHeadModel
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
bnb_8bit_compute_dtype=torch.bfloat16,
bnb_8bit_use_double_quant=True,
bnb_8bit_quant_type="nf4",
)
qmodel = GPT2LMHeadModel.from_pretrained(
"ai-forever/mGPT",
load_in_8bit=True,
torch_dtype=torch.bfloat16,
quantization_config=quantization_config,
device_map="auto"
)
qmodel.save_pretrained("model_name")
```
## Future steps
- mGPT could be further quantized (4-bit), but `model.save_pretrained()` currently throws a `NotImplementedError` error. |