File size: 992 Bytes
1ed170d
 
a48b295
8f7fe65
a48b295
 
 
2790e4b
 
 
8f7fe65
2790e4b
11ecddb
 
 
1ed170d
 
8f7fe65
1ed170d
8f7fe65
1ed170d
8f7fe65
1ed170d
a48b295
8f7fe65
2790e4b
a48b295
2790e4b
a48b295
 
 
8f7fe65
 
 
a48b295
 
8f7fe65
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
---
library_name: peft
tags:
- llama2-7b
- code
- instruct
- instruct-code
- code-alpaca
- alpaca-instruct
- alpaca
- llama7b
- gpt2
datasets:
- sahil2801/CodeAlpaca-20k
base_model: meta-llama/Llama-2-7b-hf
---

We finetuned Llama2-7B on Code-Alpaca-Instruct Dataset (sahil2801/CodeAlpaca-20k) for 5 epochs or ~ 25,000 steps using [MonsterAPI](https://monsterapi.ai) no-code [LLM finetuner](https://docs.monsterapi.ai/fine-tune-a-large-language-model-llm).

This dataset is HuggingFaceH4/CodeAlpaca_20K unfiltered, removing 36 instances of blatant alignment. 

The finetuning session got completed in 4  hours and costed us only `$16` for the entire finetuning run!

#### Hyperparameters & Run details:
- Model Path: meta-llama/Llama-2-7b
- Dataset: sahil2801/CodeAlpaca-20k
- Learning rate: 0.0003
- Number of epochs: 5
- Data split: Training: 90% / Validation: 10%
- Gradient accumulation steps: 1

Loss metrics:
![training loss](train-loss.png "Training loss")

---
license: apache-2.0
---