File size: 11,136 Bytes
391e7a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import os
import tiktoken

from logging import getLogger
from pathlib import Path
from typing import (
    cast,
    Tuple,
    Dict,
    Iterator,
    List,
    Union,
    Optional,
)
from shutil import copyfile
import numpy as np
from tiktoken.load import load_tiktoken_bpe
from tokenizers import AddedToken
from transformers import  PreTrainedTokenizerFast
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode



logger = getLogger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "tiktoken.model"}
SPIECE_UNDERLINE = "▁"

class TikTokenTokenizer(PreTrainedTokenizer):
    """
    Tokenizing and encoding/decoding text using the Tiktoken tokenizer. See megatron/tokenizer/tiktoken_tokenizer.py.

    This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
    this superclass for more information regarding those methods.

    Args:
        vocab_file (`str`):
            The path to the Tiktoken model file.
        bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|begin_of_text|>",`):
            The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
        eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|end_of_text|>"`):
            The end of sequence token.
        unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|reserved_special_token_249|>"`):
            The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
            token instead. The second to last item in special_tokens. 
        pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|reserved_special_token_250|>"`):
            The token used for padding, for example when batching sequences of different lengths.
        additional_special_tokens (list of `str`, *optional*):
            A tuple or a list of additional tokens, which will be marked as `special`, meaning that they will be
            skipped when decoding if `skip_special_tokens` is set to `True`.
    """
    
    vocab_files_names = VOCAB_FILES_NAMES

    model_input_names = ["input_ids", "attention_mask"]

    special_tokens: Dict[str, int]

    num_reserved_special_tokens = 256

    pat_str = "|".join(
        [
            r"""[\p{Han}]+""",
            r"""[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]*[\p{Ll}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?""",
            r"""[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]+[\p{Ll}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?""",
            r"""\p{N}{1,3}""",
            r""" ?[^\s\p{L}\p{N}]+[\r\n]*""",
            r"""\s*[\r\n]+""",
            r"""\s+(?!\S)""",
            r"""\s+""",
        ]
    )

    def __init__(
        self,
        vocab_file,
        bos_token: Union[str, AddedToken]="[BOS]",
        eos_token: Union[str, AddedToken]="[EOS]",
        unk_token: Union[str, AddedToken]="[UNK]",
        pad_token: Union[str, AddedToken]="[PAD]",
        additional_special_tokens: Optional[List[str]] = None,
        added_tokens_decoder: Optional[dict] = None,
        **kwargs,
    ):
        assert os.path.isfile(vocab_file), vocab_file
        if additional_special_tokens is None:
            additional_special_tokens = [
                "<|im_end|>",
                "<|im_middle|>",
                "<|im_user|>",
                "<|im_assistant|>",
                "<|im_system|>"
            ]
        special_tokens_mapping = {i: added_tokens_decoder[i].content for i in added_tokens_decoder}

        special_tokens = [str(bos_token), str(eos_token)] + additional_special_tokens + [str(unk_token), str(pad_token)] 

        self.vocab_file = vocab_file
        mergeable_ranks = load_tiktoken_bpe(vocab_file)
        num_base_tokens = len(mergeable_ranks)
        self.special_tokens = {
            special_tokens_mapping.get(i, f"<|reserved_token_{i}|>"): i \
                for i in range(num_base_tokens, num_base_tokens + self.num_reserved_special_tokens + 2)
        }

        self.model = tiktoken.Encoding(
            name=Path(vocab_file).name,
            pat_str=self.pat_str,
            mergeable_ranks=mergeable_ranks,
            special_tokens=self.special_tokens,
        )
        logger.info(f"Reloaded tiktoken model from {vocab_file}")

        self.n_words: int = self.model.n_vocab
        # BOS / EOS token IDs
        self.bos_id: int = self.special_tokens[str(bos_token)]
        self.eos_id: int = self.special_tokens[str(eos_token)]
        logger.info(
            f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}"
        )

        self.pad_id: int = self.special_tokens[str(pad_token)]
        self.unk_id: int = self.special_tokens[str(unk_token)]

        self.byte_encoder = bytes_to_unicode()
        self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}

        self.decoder = {}
        for i in range(self.n_words):
            # Taken from https://gist.github.com/xenova/a452a6474428de0182b17605a98631ee
            decoding = ''.join([
                self.byte_encoder[ord(char)] for char in
                self.model.decode_single_token_bytes(i).decode('latin-1')
            ])
            self.decoder[i] = decoding

        self.encoder = {}
        for i in range(self.n_words):
            if i in self.decoder:
                self.encoder[self.decoder[i]] = i

        super().__init__(
            bos_token=bos_token,
            eos_token=eos_token,
            unk_token=unk_token,
            pad_token=pad_token,
            additional_special_tokens=additional_special_tokens,
            **kwargs,
        )
        self.all_special_ids_set = set(self.all_special_ids)

    def encode(
        self,
        text: str,
        allow_special_tokens: bool = True,
        **kwargs
    ) -> List[int]:
        """
        Encodes a string into a list of token IDs.

        Args:
            text (str): The input string to be encoded.

        Returns:
            list[int]: A list of token IDs.
        """
        # If there are other args, we should call super().encode because there are a lot of code
        # to handle those args. supper().encode finally will call _tokenize and _convert_token_to_id.
        if len(kwargs) > 0:
            return super().encode(text, **kwargs)

        assert type(text) is str

        # The tiktoken tokenizer can handle <=400k chars without
        # pyo3_runtime.PanicException.
        TIKTOKEN_MAX_ENCODE_CHARS = 400_000

        # https://github.com/openai/tiktoken/issues/195
        # Here we iterate over subsequences and split if we exceed the limit
        # of max consecutive non-whitespace or whitespace characters.
        MAX_NO_WHITESPACES_CHARS = 25_000

        substrs = (
            substr
            for i in range(0, len(text), TIKTOKEN_MAX_ENCODE_CHARS)
            for substr in self._split_whitespaces_or_nonwhitespaces(
                text[i : i + TIKTOKEN_MAX_ENCODE_CHARS], MAX_NO_WHITESPACES_CHARS
            )
        )
        t: List[int] = []
        for substr in substrs:
            if allow_special_tokens:
                t.extend(
                    # we should consider special token as a common token
                    self.model.encode(
                        substr,
                        allowed_special="all",
                    )
                )
            else:
                t.extend(
                    # we should consider special token as a common token
                    self.model.encode(
                        substr,
                        disallowed_special=(),
                    )
                )
        return t

    def decode(
        self,
        token_ids: Union[int, List[int]],
        **kwargs
    ) -> str:
        """
        Decodes a list of token IDs into a string.

        Args:
            t (List[int]): The list of token IDs to be decoded.

        Returns:
            str: The decoded string.
        """
        # If there are other args, we should call super().decode because there are a lot of code
        # to handle those args. supper().encode finally will call convert_tokens_to_string and _convert_id_to_token.
        if len(kwargs) > 0:
            return super().decode(token_ids, **kwargs)

        if type(token_ids) is int:
            token_ids = [token_ids]

        return self.model.decode(cast(List[int], token_ids))

    @staticmethod
    def _split_whitespaces_or_nonwhitespaces(
        s: str, max_consecutive_slice_len: int
    ) -> Iterator[str]:
        """
        Splits the string `s` so that each substring contains no more than `max_consecutive_slice_len`
        consecutive whitespaces or consecutive non-whitespaces.
        """
        current_slice_len = 0
        current_slice_is_space = s[0].isspace() if len(s) > 0 else False
        slice_start = 0

        for i in range(len(s)):
            is_now_space = s[i].isspace()

            if current_slice_is_space ^ is_now_space:
                current_slice_len = 1
                current_slice_is_space = is_now_space
            else:
                current_slice_len += 1
                if current_slice_len > max_consecutive_slice_len:
                    yield s[slice_start:i]
                    slice_start = i
                    current_slice_len = 1
        yield s[slice_start:]


    """ ----- Below are the abstract methods required by PreTrainedTokenizer ----- """
    @property
    def vocab_size(self) -> int:
        return self.n_words
    
    def get_vocab(self) -> Dict[str, int]:
        return self.encoder

    def _tokenize(self, text: str, **kwargs) -> List[str]:
        return [
            self.decoder[t]
            for t in self.encode(text)
        ]
    
    def _convert_token_to_id(self, token: str) -> int:
        return self.encoder.get(token, self.unk_id)

    def _convert_id_to_token(self, index: int) -> str:
        return self.decoder.get(index)

    @staticmethod
    def clean_up_tokenization(out_string: str) -> str:
        return out_string

    def convert_tokens_to_string(self, tokens: List[str]) -> str:
        text = ''.join(tokens).replace(SPIECE_UNDERLINE, '')
        text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', 'replace')
        return text
    
    def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
        if not os.path.isdir(save_directory):
            logger.error(f"Vocabulary path ({save_directory}) should be a directory")
            return
        out_vocab_file = os.path.join(
            save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
        )

        if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
            copyfile(self.vocab_file, out_vocab_file)

        return (out_vocab_file,)