File size: 11,136 Bytes
391e7a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import os
import tiktoken
from logging import getLogger
from pathlib import Path
from typing import (
cast,
Tuple,
Dict,
Iterator,
List,
Union,
Optional,
)
from shutil import copyfile
import numpy as np
from tiktoken.load import load_tiktoken_bpe
from tokenizers import AddedToken
from transformers import PreTrainedTokenizerFast
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
logger = getLogger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "tiktoken.model"}
SPIECE_UNDERLINE = "▁"
class TikTokenTokenizer(PreTrainedTokenizer):
"""
Tokenizing and encoding/decoding text using the Tiktoken tokenizer. See megatron/tokenizer/tiktoken_tokenizer.py.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
The path to the Tiktoken model file.
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|begin_of_text|>",`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|end_of_text|>"`):
The end of sequence token.
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|reserved_special_token_249|>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead. The second to last item in special_tokens.
pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<|reserved_special_token_250|>"`):
The token used for padding, for example when batching sequences of different lengths.
additional_special_tokens (list of `str`, *optional*):
A tuple or a list of additional tokens, which will be marked as `special`, meaning that they will be
skipped when decoding if `skip_special_tokens` is set to `True`.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
special_tokens: Dict[str, int]
num_reserved_special_tokens = 256
pat_str = "|".join(
[
r"""[\p{Han}]+""",
r"""[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]*[\p{Ll}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?""",
r"""[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]+[\p{Ll}\p{Lm}\p{Lo}\p{M}&&[^\p{Han}]]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?""",
r"""\p{N}{1,3}""",
r""" ?[^\s\p{L}\p{N}]+[\r\n]*""",
r"""\s*[\r\n]+""",
r"""\s+(?!\S)""",
r"""\s+""",
]
)
def __init__(
self,
vocab_file,
bos_token: Union[str, AddedToken]="[BOS]",
eos_token: Union[str, AddedToken]="[EOS]",
unk_token: Union[str, AddedToken]="[UNK]",
pad_token: Union[str, AddedToken]="[PAD]",
additional_special_tokens: Optional[List[str]] = None,
added_tokens_decoder: Optional[dict] = None,
**kwargs,
):
assert os.path.isfile(vocab_file), vocab_file
if additional_special_tokens is None:
additional_special_tokens = [
"<|im_end|>",
"<|im_middle|>",
"<|im_user|>",
"<|im_assistant|>",
"<|im_system|>"
]
special_tokens_mapping = {i: added_tokens_decoder[i].content for i in added_tokens_decoder}
special_tokens = [str(bos_token), str(eos_token)] + additional_special_tokens + [str(unk_token), str(pad_token)]
self.vocab_file = vocab_file
mergeable_ranks = load_tiktoken_bpe(vocab_file)
num_base_tokens = len(mergeable_ranks)
self.special_tokens = {
special_tokens_mapping.get(i, f"<|reserved_token_{i}|>"): i \
for i in range(num_base_tokens, num_base_tokens + self.num_reserved_special_tokens + 2)
}
self.model = tiktoken.Encoding(
name=Path(vocab_file).name,
pat_str=self.pat_str,
mergeable_ranks=mergeable_ranks,
special_tokens=self.special_tokens,
)
logger.info(f"Reloaded tiktoken model from {vocab_file}")
self.n_words: int = self.model.n_vocab
# BOS / EOS token IDs
self.bos_id: int = self.special_tokens[str(bos_token)]
self.eos_id: int = self.special_tokens[str(eos_token)]
logger.info(
f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}"
)
self.pad_id: int = self.special_tokens[str(pad_token)]
self.unk_id: int = self.special_tokens[str(unk_token)]
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
self.decoder = {}
for i in range(self.n_words):
# Taken from https://gist.github.com/xenova/a452a6474428de0182b17605a98631ee
decoding = ''.join([
self.byte_encoder[ord(char)] for char in
self.model.decode_single_token_bytes(i).decode('latin-1')
])
self.decoder[i] = decoding
self.encoder = {}
for i in range(self.n_words):
if i in self.decoder:
self.encoder[self.decoder[i]] = i
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
additional_special_tokens=additional_special_tokens,
**kwargs,
)
self.all_special_ids_set = set(self.all_special_ids)
def encode(
self,
text: str,
allow_special_tokens: bool = True,
**kwargs
) -> List[int]:
"""
Encodes a string into a list of token IDs.
Args:
text (str): The input string to be encoded.
Returns:
list[int]: A list of token IDs.
"""
# If there are other args, we should call super().encode because there are a lot of code
# to handle those args. supper().encode finally will call _tokenize and _convert_token_to_id.
if len(kwargs) > 0:
return super().encode(text, **kwargs)
assert type(text) is str
# The tiktoken tokenizer can handle <=400k chars without
# pyo3_runtime.PanicException.
TIKTOKEN_MAX_ENCODE_CHARS = 400_000
# https://github.com/openai/tiktoken/issues/195
# Here we iterate over subsequences and split if we exceed the limit
# of max consecutive non-whitespace or whitespace characters.
MAX_NO_WHITESPACES_CHARS = 25_000
substrs = (
substr
for i in range(0, len(text), TIKTOKEN_MAX_ENCODE_CHARS)
for substr in self._split_whitespaces_or_nonwhitespaces(
text[i : i + TIKTOKEN_MAX_ENCODE_CHARS], MAX_NO_WHITESPACES_CHARS
)
)
t: List[int] = []
for substr in substrs:
if allow_special_tokens:
t.extend(
# we should consider special token as a common token
self.model.encode(
substr,
allowed_special="all",
)
)
else:
t.extend(
# we should consider special token as a common token
self.model.encode(
substr,
disallowed_special=(),
)
)
return t
def decode(
self,
token_ids: Union[int, List[int]],
**kwargs
) -> str:
"""
Decodes a list of token IDs into a string.
Args:
t (List[int]): The list of token IDs to be decoded.
Returns:
str: The decoded string.
"""
# If there are other args, we should call super().decode because there are a lot of code
# to handle those args. supper().encode finally will call convert_tokens_to_string and _convert_id_to_token.
if len(kwargs) > 0:
return super().decode(token_ids, **kwargs)
if type(token_ids) is int:
token_ids = [token_ids]
return self.model.decode(cast(List[int], token_ids))
@staticmethod
def _split_whitespaces_or_nonwhitespaces(
s: str, max_consecutive_slice_len: int
) -> Iterator[str]:
"""
Splits the string `s` so that each substring contains no more than `max_consecutive_slice_len`
consecutive whitespaces or consecutive non-whitespaces.
"""
current_slice_len = 0
current_slice_is_space = s[0].isspace() if len(s) > 0 else False
slice_start = 0
for i in range(len(s)):
is_now_space = s[i].isspace()
if current_slice_is_space ^ is_now_space:
current_slice_len = 1
current_slice_is_space = is_now_space
else:
current_slice_len += 1
if current_slice_len > max_consecutive_slice_len:
yield s[slice_start:i]
slice_start = i
current_slice_len = 1
yield s[slice_start:]
""" ----- Below are the abstract methods required by PreTrainedTokenizer ----- """
@property
def vocab_size(self) -> int:
return self.n_words
def get_vocab(self) -> Dict[str, int]:
return self.encoder
def _tokenize(self, text: str, **kwargs) -> List[str]:
return [
self.decoder[t]
for t in self.encode(text)
]
def _convert_token_to_id(self, token: str) -> int:
return self.encoder.get(token, self.unk_id)
def _convert_id_to_token(self, index: int) -> str:
return self.decoder.get(index)
@staticmethod
def clean_up_tokenization(out_string: str) -> str:
return out_string
def convert_tokens_to_string(self, tokens: List[str]) -> str:
text = ''.join(tokens).replace(SPIECE_UNDERLINE, '')
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', 'replace')
return text
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
|