Create handler.py
Browse files- handler.py +27 -0
handler.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
import base64
|
5 |
+
from io import BytesIO
|
6 |
+
from transformers import BlipProcessor, BlipForQuestionAnswering
|
7 |
+
|
8 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
9 |
+
|
10 |
+
class EndpointHandler():
|
11 |
+
def __init__(self, path=""):
|
12 |
+
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-capfilt-large")
|
13 |
+
self.model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-capfilt-large").to(device)
|
14 |
+
|
15 |
+
|
16 |
+
def __call__(self, data: Any) -> List[float]:
|
17 |
+
inputs = data.pop("inputs", data)
|
18 |
+
|
19 |
+
image = Image.open(BytesIO(base64.b64decode(inputs['image'])))
|
20 |
+
inputs = self.processor(image, inputs['question'], return_tensors="pt").to(device)
|
21 |
+
|
22 |
+
with torch.no_grad():
|
23 |
+
outputs = self.model.generate(**inputs)
|
24 |
+
|
25 |
+
pooler_output = outputs.pooler_output
|
26 |
+
return processor.decode(out[0], skip_special_tokens=True)
|
27 |
+
|