morenolq commited on
Commit
3446385
Β·
verified Β·
1 Parent(s): 122eabd

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +101 -0
README.md ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - it
4
+ tags:
5
+ - text2text-generation
6
+ - summarization
7
+ - legal-ai
8
+ - italian-law
9
+ license: mit
10
+ datasets:
11
+ - joelniklaus/Multi_Legal_Pile
12
+ library_name: transformers
13
+ pipeline_tag: text2text-generation
14
+ widget:
15
+ - text: "<mask> 1234: Il contratto si intende concluso quando..."
16
+ base_model:
17
+ - morenolq/bart-it
18
+ ---
19
+
20
+ # πŸ“Œ Model Card: LEGIT-BART Series
21
+
22
+ ## πŸ›οΈ Model Overview
23
+ The **LEGIT-BART** models are a family of **pre-trained transformer-based models** for **Italian legal text processing**.
24
+ They build upon **BART-IT** ([`morenolq/bart-it`](https://huggingface.co/morenolq/bart-it)) and are further pre-trained on **Italian legal corpora**.
25
+
26
+ πŸ’‘ Key features:
27
+ - **Extended context length** with **Local-Sparse-Global (LSG) Attention** (up to **16,384 tokens**) πŸ“œ
28
+ - **Trained on legal documents** such as **statutes, case law, and contracts** πŸ“‘
29
+ - **Not fine-tuned for specific tasks** (requires further adaptation)
30
+
31
+ ## πŸ“‚ Available Models
32
+
33
+ | Model | Description | Link |
34
+ |--------|-------------|------|
35
+ | **LEGIT-SCRATCH-BART** | Trained from scratch on **Italian legal texts** | [πŸ”— Link](https://huggingface.co/morenolq/LEGIT-SCRATCH-BART) |
36
+ | **LEGIT-BART** | Continued pre-training of `morenolq/bart-it` on **Italian legal texts** | [πŸ”— Link](https://huggingface.co/morenolq/LEGIT-BART) |
37
+ | **LEGIT-SCRATCH-BART-LSG-4096** | Trained from scratch with **LSG attention**, supporting **4,096 tokens** | [πŸ”— Link](https://huggingface.co/morenolq/LEGIT-SCRATCH-BART-LSG-4096) |
38
+ | **LEGIT-SCRATCH-BART-LSG-16384** | Trained from scratch with **LSG attention**, supporting **16,384 tokens** | [πŸ”— Link](https://huggingface.co/morenolq/LEGIT-SCRATCH-BART-LSG-16384) |
39
+ | **LEGIT-BART-LSG-4096** | Continued pre-training of `morenolq/bart-it`, supporting **4,096 tokens** | [πŸ”— Link](https://huggingface.co/morenolq/LEGIT-BART-LSG-4096) |
40
+ | **LEGIT-BART-LSG-16384** | Continued pre-training of `morenolq/bart-it`, supporting **16,384 tokens** | [πŸ”— Link](https://huggingface.co/morenolq/LEGIT-BART-LSG-16384) |
41
+ | **BARTIT-LSG-16384** | Continued pre-training of `morenolq/bart-it`, supporting **16,384 tokens** | [πŸ”— Link](https://huggingface.co/morenolq/LEGIT-BART-LSG-16384) |
42
+ | **BART-IT-LSG-4096** | `morenolq/bart-it` with **LSG attention**, supporting **4,096 tokens** | [πŸ”— Link](https://huggingface.co/morenolq/BART-IT-LSG-4096)
43
+ | **BART-IT-LSG-16384** | `morenolq/bart-it` with **LSG attention**, supporting **16,384 tokens** | [πŸ”— Link](https://huggingface.co/morenolq/BART-IT-LSG-16384) |
44
+
45
+ ---
46
+
47
+ ## πŸ› οΈ Model Details
48
+
49
+ πŸ”Ή **Architecture**
50
+ - Base Model: [`morenolq/bart-it`](https://huggingface.co/morenolq/bart-it)
51
+ - Transformer Encoder-Decoder
52
+ - **LSG Attention** for long documents
53
+ - Specific tokenizers for models trained from scratch (underperforming continual pre-training in our experiments).
54
+
55
+ πŸ”Ή **Training Data**
56
+ - Dataset: [`joelniklaus/Multi_Legal_Pile`](https://huggingface.co/datasets/joelniklaus/Multi_Legal_Pile)
57
+ - Types of legal texts used:
58
+ - **Legislation** (laws, codes, amendments)
59
+ - **Case law** (judicial decisions)
60
+ - **Contracts** (public legal agreements)
61
+
62
+ ---
63
+
64
+ ## πŸš€ How to Use
65
+
66
+ ```python
67
+ from transformers import BartForConditionalGeneration, AutoTokenizer
68
+
69
+ # Load tokenizer and model
70
+ model_name = "morenolq/LEGIT-BART"
71
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
72
+ model = BartForConditionalGeneration.from_pretrained(model_name)
73
+
74
+ # Example input
75
+ input_text = "<mask> 1234: Il contratto si intende concluso quando..."
76
+ inputs = tokenizer(input_text, return_tensors="pt", max_length=4096, truncation=True)
77
+
78
+ # Generate summary
79
+ summary_ids = model.generate(inputs.input_ids, max_length=150, num_beams=4, early_stopping=True)
80
+ summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
81
+ print("πŸ“ Summary:", summary)
82
+ ```
83
+
84
+ ---
85
+
86
+ ⚠️ Limitations & Ethical Considerations
87
+ - **Not fine-tuned for specific tasks**: The models are pre-trained on legal texts and may require further adaptation for specific legal NLP tasks (e.g., summarization, question-answering).
88
+ - **Bias and fairness**: Legal texts may contain biases present in the legal system. Care should be taken to ensure fairness and ethical use of the models.
89
+ - **Legal advice**: The models are not a substitute for professional legal advice. Always consult a qualified legal professional for legal matters.
90
+
91
+ ---
92
+
93
+ ## πŸ“š Reference
94
+
95
+ The paper presenting LEGIT-BART models is currently under review and will be updated here once published.
96
+
97
+ ```bibtex
98
+ Coming soon...
99
+ ```
100
+
101
+ ---