BioClinicalBERT Versione dopo 13 epochs
Browse files- README.md +76 -0
- config.json +26 -0
- pytorch_model.bin +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: emilyalsentzer/Bio_ClinicalBERT
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: ICU_Returns_BioClinicalBERT
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# ICU_Returns_BioClinicalBERT
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 1.7775
|
19 |
+
- F1:: 0.7063
|
20 |
+
- Roc Auc: 0.7198
|
21 |
+
- Precision with 0:: 0.8846
|
22 |
+
- Precision with 1:: 0.6538
|
23 |
+
- Recall with 0:: 0.5055
|
24 |
+
- Recal with 1:: 0.9341
|
25 |
+
- Accuracy:: 0.7198
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 0.0001
|
45 |
+
- train_batch_size: 32
|
46 |
+
- eval_batch_size: 16
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 13
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | F1: | Roc Auc | Precision with 0: | Precision with 1: | Recall with 0: | Recal with 1: | Accuracy: |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:-----------------:|:-----------------:|:--------------:|:--------------:|:---------:|
|
56 |
+
| No log | 1.0 | 46 | 0.6964 | 0.3573 | 0.5110 | 1.0 | 0.5056 | 0.0220 | 1.0 | 0.5110 |
|
57 |
+
| No log | 2.0 | 92 | 0.6611 | 0.5248 | 0.5714 | 0.6912 | 0.5439 | 0.2582 | 0.8846 | 0.5714 |
|
58 |
+
| No log | 3.0 | 138 | 0.6322 | 0.6315 | 0.6374 | 0.6838 | 0.6096 | 0.5110 | 0.7637 | 0.6374 |
|
59 |
+
| No log | 4.0 | 184 | 0.6526 | 0.6396 | 0.6566 | 0.7767 | 0.6092 | 0.4396 | 0.8736 | 0.6566 |
|
60 |
+
| No log | 5.0 | 230 | 0.6826 | 0.6693 | 0.6923 | 0.9070 | 0.6259 | 0.4286 | 0.9560 | 0.6923 |
|
61 |
+
| No log | 6.0 | 276 | 0.7496 | 0.7230 | 0.7335 | 0.8829 | 0.6680 | 0.5385 | 0.9286 | 0.7335 |
|
62 |
+
| No log | 7.0 | 322 | 1.5500 | 0.6398 | 0.6703 | 0.9079 | 0.6076 | 0.3791 | 0.9615 | 0.6703 |
|
63 |
+
| No log | 8.0 | 368 | 0.9037 | 0.7438 | 0.7527 | 0.9035 | 0.684 | 0.5659 | 0.9396 | 0.7527 |
|
64 |
+
| No log | 9.0 | 414 | 1.6723 | 0.6965 | 0.7143 | 0.9149 | 0.6444 | 0.4725 | 0.9560 | 0.7143 |
|
65 |
+
| No log | 10.0 | 460 | 1.4913 | 0.7030 | 0.7170 | 0.8835 | 0.6513 | 0.5 | 0.9341 | 0.7170 |
|
66 |
+
| 0.3158 | 11.0 | 506 | 1.7129 | 0.6990 | 0.7143 | 0.89 | 0.6477 | 0.4890 | 0.9396 | 0.7143 |
|
67 |
+
| 0.3158 | 12.0 | 552 | 1.8420 | 0.6882 | 0.7060 | 0.8947 | 0.6394 | 0.4670 | 0.9451 | 0.7060 |
|
68 |
+
| 0.3158 | 13.0 | 598 | 1.7775 | 0.7063 | 0.7198 | 0.8846 | 0.6538 | 0.5055 | 0.9341 | 0.7198 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.34.0
|
74 |
+
- Pytorch 2.1.0+cu121
|
75 |
+
- Datasets 2.14.5
|
76 |
+
- Tokenizers 0.14.1
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "emilyalsentzer/Bio_ClinicalBERT",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 3072,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 12,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"problem_type": "single_label_classification",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.34.0",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 28996
|
26 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f08c2dc217613f66995554a3a9320518736e88616c40b7d1239c72532fbf39e2
|
3 |
+
size 433316078
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e69ded26459e4c5f25be189a6397a408243ad169246d39a94db9da68f9223f95
|
3 |
+
size 4536
|