--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-finetuned results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.6982446363889663 --- # vit-base-patch16-224-in21k-finetuned This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.8524 - Accuracy: 0.6982 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8333 | 1.0 | 224 | 0.9670 | 0.6474 | | 0.7972 | 2.0 | 449 | 0.9123 | 0.6654 | | 0.667 | 3.0 | 673 | 0.8677 | 0.6886 | | 0.5729 | 4.0 | 898 | 0.8487 | 0.6938 | | 0.5347 | 4.99 | 1120 | 0.8524 | 0.6982 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0