upload
Browse files- .gitattributes +1 -0
- added_tokens.json +24 -0
- config.json +30 -0
- generation_config.json +6 -0
- latest +1 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +208 -0
- trainer_state.json +901 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +674 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/lustre/fsn1/projects/rech/gkb/uua32zb/grand_challenge/checkpoints/Qwen__Qwen2.5-1.5B-pretraining-fineweb2-0.0001LR-8192CL-1GAS-4BS-1EPOCHS-0.9BETA1-0.95BETA2/",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151643,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 1536,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 8960,
|
13 |
+
"max_position_embeddings": 131072,
|
14 |
+
"max_window_layers": 28,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 28,
|
18 |
+
"num_key_value_heads": 2,
|
19 |
+
"rms_norm_eps": 1e-06,
|
20 |
+
"rope_scaling": null,
|
21 |
+
"rope_theta": 1000000.0,
|
22 |
+
"sliding_window": null,
|
23 |
+
"tie_word_embeddings": true,
|
24 |
+
"torch_dtype": "bfloat16",
|
25 |
+
"transformers_version": "4.46.1",
|
26 |
+
"use_cache": false,
|
27 |
+
"use_mrope": false,
|
28 |
+
"use_sliding_window": false,
|
29 |
+
"vocab_size": 151936
|
30 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"eos_token_id": 151643,
|
4 |
+
"max_new_tokens": 2048,
|
5 |
+
"transformers_version": "4.46.1"
|
6 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step6237
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc5edf1bc45f08dfaeca221b40e789f61302043d25115984818a52a274f213be
|
3 |
+
size 3554214752
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"model_max_length": 131072,
|
203 |
+
"pad_token": "<|endoftext|>",
|
204 |
+
"padding_side": "right",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,901 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 3.0,
|
5 |
+
"eval_steps": 500.0,
|
6 |
+
"global_step": 6237,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.02405002405002405,
|
13 |
+
"grad_norm": 0.4139963388442993,
|
14 |
+
"learning_rate": 0.00019996828714700116,
|
15 |
+
"loss": 1.5971,
|
16 |
+
"step": 50
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0481000481000481,
|
20 |
+
"grad_norm": 0.3423018157482147,
|
21 |
+
"learning_rate": 0.00019987316870210547,
|
22 |
+
"loss": 1.274,
|
23 |
+
"step": 100
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.07215007215007214,
|
27 |
+
"grad_norm": 0.3551710247993469,
|
28 |
+
"learning_rate": 0.0001997147049948582,
|
29 |
+
"loss": 1.2519,
|
30 |
+
"step": 150
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.0962000962000962,
|
34 |
+
"grad_norm": 0.32329073548316956,
|
35 |
+
"learning_rate": 0.0001994929965319844,
|
36 |
+
"loss": 1.2382,
|
37 |
+
"step": 200
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.12025012025012025,
|
41 |
+
"grad_norm": 0.48585018515586853,
|
42 |
+
"learning_rate": 0.0001992081839336419,
|
43 |
+
"loss": 1.2293,
|
44 |
+
"step": 250
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.1443001443001443,
|
48 |
+
"grad_norm": 0.40136224031448364,
|
49 |
+
"learning_rate": 0.00019886044784423197,
|
50 |
+
"loss": 1.2214,
|
51 |
+
"step": 300
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.16835016835016836,
|
55 |
+
"grad_norm": 0.574002206325531,
|
56 |
+
"learning_rate": 0.00019845000881782432,
|
57 |
+
"loss": 1.2184,
|
58 |
+
"step": 350
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.1924001924001924,
|
62 |
+
"grad_norm": 0.4179827570915222,
|
63 |
+
"learning_rate": 0.00019797712717826914,
|
64 |
+
"loss": 1.2064,
|
65 |
+
"step": 400
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.21645021645021645,
|
69 |
+
"grad_norm": 0.33033809065818787,
|
70 |
+
"learning_rate": 0.00019744210285408488,
|
71 |
+
"loss": 1.2055,
|
72 |
+
"step": 450
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.2405002405002405,
|
76 |
+
"grad_norm": 0.2719138562679291,
|
77 |
+
"learning_rate": 0.0001968452751882264,
|
78 |
+
"loss": 1.2077,
|
79 |
+
"step": 500
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.26455026455026454,
|
83 |
+
"grad_norm": 0.29797521233558655,
|
84 |
+
"learning_rate": 0.00019618702272285434,
|
85 |
+
"loss": 1.2096,
|
86 |
+
"step": 550
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.2886002886002886,
|
90 |
+
"grad_norm": 0.3336372673511505,
|
91 |
+
"learning_rate": 0.00019546776295924212,
|
92 |
+
"loss": 1.2072,
|
93 |
+
"step": 600
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.3126503126503126,
|
97 |
+
"grad_norm": 0.26755037903785706,
|
98 |
+
"learning_rate": 0.0001946879520929728,
|
99 |
+
"loss": 1.1974,
|
100 |
+
"step": 650
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.3367003367003367,
|
104 |
+
"grad_norm": 0.36268576979637146,
|
105 |
+
"learning_rate": 0.00019384808472459368,
|
106 |
+
"loss": 1.2045,
|
107 |
+
"step": 700
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.36075036075036077,
|
111 |
+
"grad_norm": 0.3121575713157654,
|
112 |
+
"learning_rate": 0.0001929486935459127,
|
113 |
+
"loss": 1.1889,
|
114 |
+
"step": 750
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.3848003848003848,
|
118 |
+
"grad_norm": 0.3159404993057251,
|
119 |
+
"learning_rate": 0.00019199034900213452,
|
120 |
+
"loss": 1.1921,
|
121 |
+
"step": 800
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.40885040885040885,
|
125 |
+
"grad_norm": 0.7236579060554504,
|
126 |
+
"learning_rate": 0.000190973658930052,
|
127 |
+
"loss": 1.194,
|
128 |
+
"step": 850
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.4329004329004329,
|
132 |
+
"grad_norm": 0.24907168745994568,
|
133 |
+
"learning_rate": 0.00018989926817252113,
|
134 |
+
"loss": 1.191,
|
135 |
+
"step": 900
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.45695045695045694,
|
139 |
+
"grad_norm": 0.24481187760829926,
|
140 |
+
"learning_rate": 0.00018876785816946505,
|
141 |
+
"loss": 1.1857,
|
142 |
+
"step": 950
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.481000481000481,
|
146 |
+
"grad_norm": 0.2668200731277466,
|
147 |
+
"learning_rate": 0.00018758014652566597,
|
148 |
+
"loss": 1.1957,
|
149 |
+
"step": 1000
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.5050505050505051,
|
153 |
+
"grad_norm": 0.2687171399593353,
|
154 |
+
"learning_rate": 0.0001863368865556191,
|
155 |
+
"loss": 1.1864,
|
156 |
+
"step": 1050
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.5291005291005291,
|
160 |
+
"grad_norm": 0.23915782570838928,
|
161 |
+
"learning_rate": 0.0001850388668057379,
|
162 |
+
"loss": 1.184,
|
163 |
+
"step": 1100
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.5531505531505532,
|
167 |
+
"grad_norm": 0.37159469723701477,
|
168 |
+
"learning_rate": 0.0001836869105542127,
|
169 |
+
"loss": 1.1849,
|
170 |
+
"step": 1150
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.5772005772005772,
|
174 |
+
"grad_norm": 0.2752649784088135,
|
175 |
+
"learning_rate": 0.0001822818752888408,
|
176 |
+
"loss": 1.1843,
|
177 |
+
"step": 1200
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.6012506012506013,
|
181 |
+
"grad_norm": 0.19733025133609772,
|
182 |
+
"learning_rate": 0.00018082465216315882,
|
183 |
+
"loss": 1.1766,
|
184 |
+
"step": 1250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.6253006253006252,
|
188 |
+
"grad_norm": 0.2180165797472,
|
189 |
+
"learning_rate": 0.00017931616543122214,
|
190 |
+
"loss": 1.1865,
|
191 |
+
"step": 1300
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.6493506493506493,
|
195 |
+
"grad_norm": 0.25025510787963867,
|
196 |
+
"learning_rate": 0.00017775737186139038,
|
197 |
+
"loss": 1.1723,
|
198 |
+
"step": 1350
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.6734006734006734,
|
202 |
+
"grad_norm": 0.2865007817745209,
|
203 |
+
"learning_rate": 0.00017614926012949028,
|
204 |
+
"loss": 1.172,
|
205 |
+
"step": 1400
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.6974506974506974,
|
209 |
+
"grad_norm": 0.3406023681163788,
|
210 |
+
"learning_rate": 0.00017449285019174098,
|
211 |
+
"loss": 1.1795,
|
212 |
+
"step": 1450
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.7215007215007215,
|
216 |
+
"grad_norm": 0.19766800105571747,
|
217 |
+
"learning_rate": 0.00017278919263783978,
|
218 |
+
"loss": 1.1784,
|
219 |
+
"step": 1500
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.7455507455507455,
|
223 |
+
"grad_norm": 0.1965962052345276,
|
224 |
+
"learning_rate": 0.00017103936802461797,
|
225 |
+
"loss": 1.1754,
|
226 |
+
"step": 1550
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.7696007696007696,
|
230 |
+
"grad_norm": 0.2381555736064911,
|
231 |
+
"learning_rate": 0.00016924448619069023,
|
232 |
+
"loss": 1.1671,
|
233 |
+
"step": 1600
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.7936507936507936,
|
237 |
+
"grad_norm": 0.20156389474868774,
|
238 |
+
"learning_rate": 0.00016740568555253155,
|
239 |
+
"loss": 1.1738,
|
240 |
+
"step": 1650
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.8177008177008177,
|
244 |
+
"grad_norm": 0.18294361233711243,
|
245 |
+
"learning_rate": 0.00016552413238242857,
|
246 |
+
"loss": 1.1727,
|
247 |
+
"step": 1700
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.8417508417508418,
|
251 |
+
"grad_norm": 0.2975623309612274,
|
252 |
+
"learning_rate": 0.00016360102006876317,
|
253 |
+
"loss": 1.1677,
|
254 |
+
"step": 1750
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.8658008658008658,
|
258 |
+
"grad_norm": 0.1871371865272522,
|
259 |
+
"learning_rate": 0.0001616375683590974,
|
260 |
+
"loss": 1.1689,
|
261 |
+
"step": 1800
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.8898508898508899,
|
265 |
+
"grad_norm": 0.21457934379577637,
|
266 |
+
"learning_rate": 0.00015963502258654005,
|
267 |
+
"loss": 1.1605,
|
268 |
+
"step": 1850
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.9139009139009139,
|
272 |
+
"grad_norm": 0.20261706411838531,
|
273 |
+
"learning_rate": 0.0001575946528798853,
|
274 |
+
"loss": 1.1627,
|
275 |
+
"step": 1900
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.937950937950938,
|
279 |
+
"grad_norm": 0.17685186862945557,
|
280 |
+
"learning_rate": 0.0001555177533580245,
|
281 |
+
"loss": 1.1627,
|
282 |
+
"step": 1950
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.962000962000962,
|
286 |
+
"grad_norm": 0.212468221783638,
|
287 |
+
"learning_rate": 0.00015340564130914233,
|
288 |
+
"loss": 1.161,
|
289 |
+
"step": 2000
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.9860509860509861,
|
293 |
+
"grad_norm": 0.175174742937088,
|
294 |
+
"learning_rate": 0.00015125965635521724,
|
295 |
+
"loss": 1.1688,
|
296 |
+
"step": 2050
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 1.0101010101010102,
|
300 |
+
"grad_norm": 0.19970253109931946,
|
301 |
+
"learning_rate": 0.00014908115960235682,
|
302 |
+
"loss": 1.142,
|
303 |
+
"step": 2100
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 1.034151034151034,
|
307 |
+
"grad_norm": 0.21254608035087585,
|
308 |
+
"learning_rate": 0.00014687153277750676,
|
309 |
+
"loss": 1.1271,
|
310 |
+
"step": 2150
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 1.0582010582010581,
|
314 |
+
"grad_norm": 0.1651500016450882,
|
315 |
+
"learning_rate": 0.00014463217735208062,
|
316 |
+
"loss": 1.121,
|
317 |
+
"step": 2200
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 1.0822510822510822,
|
321 |
+
"grad_norm": 0.2405405044555664,
|
322 |
+
"learning_rate": 0.00014236451365306674,
|
323 |
+
"loss": 1.1313,
|
324 |
+
"step": 2250
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 1.1063011063011063,
|
328 |
+
"grad_norm": 0.17223596572875977,
|
329 |
+
"learning_rate": 0.00014006997996217593,
|
330 |
+
"loss": 1.1344,
|
331 |
+
"step": 2300
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 1.1303511303511304,
|
335 |
+
"grad_norm": 0.1969347894191742,
|
336 |
+
"learning_rate": 0.00013775003160360096,
|
337 |
+
"loss": 1.1176,
|
338 |
+
"step": 2350
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 1.1544011544011543,
|
342 |
+
"grad_norm": 0.187143936753273,
|
343 |
+
"learning_rate": 0.00013540614002096701,
|
344 |
+
"loss": 1.1322,
|
345 |
+
"step": 2400
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 1.1784511784511784,
|
349 |
+
"grad_norm": 0.1838238537311554,
|
350 |
+
"learning_rate": 0.00013303979184405826,
|
351 |
+
"loss": 1.1293,
|
352 |
+
"step": 2450
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 1.2025012025012025,
|
356 |
+
"grad_norm": 0.17928341031074524,
|
357 |
+
"learning_rate": 0.00013065248794591223,
|
358 |
+
"loss": 1.1268,
|
359 |
+
"step": 2500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 1.2265512265512266,
|
363 |
+
"grad_norm": 0.2683047950267792,
|
364 |
+
"learning_rate": 0.00012824574249088063,
|
365 |
+
"loss": 1.1234,
|
366 |
+
"step": 2550
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 1.2506012506012505,
|
370 |
+
"grad_norm": 0.18034860491752625,
|
371 |
+
"learning_rate": 0.0001258210819742599,
|
372 |
+
"loss": 1.125,
|
373 |
+
"step": 2600
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 1.2746512746512746,
|
377 |
+
"grad_norm": 0.26357391476631165,
|
378 |
+
"learning_rate": 0.00012338004425410074,
|
379 |
+
"loss": 1.1217,
|
380 |
+
"step": 2650
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 1.2987012987012987,
|
384 |
+
"grad_norm": 0.17828579246997833,
|
385 |
+
"learning_rate": 0.00012092417757581085,
|
386 |
+
"loss": 1.1262,
|
387 |
+
"step": 2700
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 1.3227513227513228,
|
391 |
+
"grad_norm": 0.20247310400009155,
|
392 |
+
"learning_rate": 0.00011845503959016928,
|
393 |
+
"loss": 1.1246,
|
394 |
+
"step": 2750
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 1.3468013468013469,
|
398 |
+
"grad_norm": 0.17381271719932556,
|
399 |
+
"learning_rate": 0.0001159741963653755,
|
400 |
+
"loss": 1.1181,
|
401 |
+
"step": 2800
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 1.370851370851371,
|
405 |
+
"grad_norm": 0.19958114624023438,
|
406 |
+
"learning_rate": 0.00011348322139375948,
|
407 |
+
"loss": 1.1307,
|
408 |
+
"step": 2850
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 1.3949013949013949,
|
412 |
+
"grad_norm": 0.21912401914596558,
|
413 |
+
"learning_rate": 0.00011098369459378328,
|
414 |
+
"loss": 1.1264,
|
415 |
+
"step": 2900
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 1.418951418951419,
|
419 |
+
"grad_norm": 0.1694297194480896,
|
420 |
+
"learning_rate": 0.00010847720130796631,
|
421 |
+
"loss": 1.1256,
|
422 |
+
"step": 2950
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 1.443001443001443,
|
426 |
+
"grad_norm": 0.13446395099163055,
|
427 |
+
"learning_rate": 0.00010596533129737092,
|
428 |
+
"loss": 1.1258,
|
429 |
+
"step": 3000
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 1.467051467051467,
|
433 |
+
"grad_norm": 0.140371173620224,
|
434 |
+
"learning_rate": 0.00010344967773328507,
|
435 |
+
"loss": 1.1191,
|
436 |
+
"step": 3050
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 1.491101491101491,
|
440 |
+
"grad_norm": 0.18016813695430756,
|
441 |
+
"learning_rate": 0.00010093183618674224,
|
442 |
+
"loss": 1.114,
|
443 |
+
"step": 3100
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 1.5151515151515151,
|
447 |
+
"grad_norm": 0.17306862771511078,
|
448 |
+
"learning_rate": 9.84134036165192e-05,
|
449 |
+
"loss": 1.1149,
|
450 |
+
"step": 3150
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 1.5392015392015392,
|
454 |
+
"grad_norm": 0.14116255939006805,
|
455 |
+
"learning_rate": 9.589597735625377e-05,
|
456 |
+
"loss": 1.123,
|
457 |
+
"step": 3200
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 1.5632515632515633,
|
461 |
+
"grad_norm": 0.16819800436496735,
|
462 |
+
"learning_rate": 9.338115410132441e-05,
|
463 |
+
"loss": 1.1203,
|
464 |
+
"step": 3250
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 1.5873015873015874,
|
468 |
+
"grad_norm": 0.21958529949188232,
|
469 |
+
"learning_rate": 9.087052889613518e-05,
|
470 |
+
"loss": 1.1226,
|
471 |
+
"step": 3300
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 1.6113516113516113,
|
475 |
+
"grad_norm": 0.15786272287368774,
|
476 |
+
"learning_rate": 8.836569412244745e-05,
|
477 |
+
"loss": 1.1212,
|
478 |
+
"step": 3350
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 1.6354016354016354,
|
482 |
+
"grad_norm": 0.17366796731948853,
|
483 |
+
"learning_rate": 8.586823848940047e-05,
|
484 |
+
"loss": 1.1129,
|
485 |
+
"step": 3400
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 1.6594516594516593,
|
489 |
+
"grad_norm": 0.21448016166687012,
|
490 |
+
"learning_rate": 8.337974602586152e-05,
|
491 |
+
"loss": 1.1216,
|
492 |
+
"step": 3450
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 1.6835016835016834,
|
496 |
+
"grad_norm": 0.17243099212646484,
|
497 |
+
"learning_rate": 8.090179507574427e-05,
|
498 |
+
"loss": 1.1096,
|
499 |
+
"step": 3500
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 1.7075517075517075,
|
503 |
+
"grad_norm": 0.1429734081029892,
|
504 |
+
"learning_rate": 7.843595729693316e-05,
|
505 |
+
"loss": 1.1071,
|
506 |
+
"step": 3550
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 1.7316017316017316,
|
510 |
+
"grad_norm": 0.15200386941432953,
|
511 |
+
"learning_rate": 7.598379666444808e-05,
|
512 |
+
"loss": 1.1158,
|
513 |
+
"step": 3600
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 1.7556517556517557,
|
517 |
+
"grad_norm": 0.1442406326532364,
|
518 |
+
"learning_rate": 7.354686847848242e-05,
|
519 |
+
"loss": 1.112,
|
520 |
+
"step": 3650
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 1.7797017797017798,
|
524 |
+
"grad_norm": 0.17678239941596985,
|
525 |
+
"learning_rate": 7.11267183779428e-05,
|
526 |
+
"loss": 1.1118,
|
527 |
+
"step": 3700
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 1.8037518037518039,
|
531 |
+
"grad_norm": 0.147593155503273,
|
532 |
+
"learning_rate": 6.872488136011667e-05,
|
533 |
+
"loss": 1.1165,
|
534 |
+
"step": 3750
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 1.8278018278018278,
|
538 |
+
"grad_norm": 0.1334652155637741,
|
539 |
+
"learning_rate": 6.634288080708952e-05,
|
540 |
+
"loss": 1.1135,
|
541 |
+
"step": 3800
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 1.8518518518518519,
|
545 |
+
"grad_norm": 0.14890378713607788,
|
546 |
+
"learning_rate": 6.398222751952899e-05,
|
547 |
+
"loss": 1.1086,
|
548 |
+
"step": 3850
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 1.8759018759018757,
|
552 |
+
"grad_norm": 0.1334807574748993,
|
553 |
+
"learning_rate": 6.164441875844882e-05,
|
554 |
+
"loss": 1.1144,
|
555 |
+
"step": 3900
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 1.8999518999518998,
|
559 |
+
"grad_norm": 0.12897680699825287,
|
560 |
+
"learning_rate": 5.933093729556062e-05,
|
561 |
+
"loss": 1.1116,
|
562 |
+
"step": 3950
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 1.924001924001924,
|
566 |
+
"grad_norm": 0.17530564963817596,
|
567 |
+
"learning_rate": 5.7043250472815356e-05,
|
568 |
+
"loss": 1.1039,
|
569 |
+
"step": 4000
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 1.948051948051948,
|
573 |
+
"grad_norm": 0.15966495871543884,
|
574 |
+
"learning_rate": 5.478280927173145e-05,
|
575 |
+
"loss": 1.101,
|
576 |
+
"step": 4050
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 1.9721019721019721,
|
580 |
+
"grad_norm": 0.18890446424484253,
|
581 |
+
"learning_rate": 5.255104739309924e-05,
|
582 |
+
"loss": 1.1077,
|
583 |
+
"step": 4100
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 1.9961519961519962,
|
587 |
+
"grad_norm": 0.1547369807958603,
|
588 |
+
"learning_rate": 5.0349380347646494e-05,
|
589 |
+
"loss": 1.103,
|
590 |
+
"step": 4150
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 2.0202020202020203,
|
594 |
+
"grad_norm": 0.13888758420944214,
|
595 |
+
"learning_rate": 4.8179204558240444e-05,
|
596 |
+
"loss": 1.0826,
|
597 |
+
"step": 4200
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 2.0442520442520444,
|
601 |
+
"grad_norm": 0.11266086250543594,
|
602 |
+
"learning_rate": 4.6041896474197e-05,
|
603 |
+
"loss": 1.071,
|
604 |
+
"step": 4250
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 2.068302068302068,
|
608 |
+
"grad_norm": 0.14245671033859253,
|
609 |
+
"learning_rate": 4.393881169825779e-05,
|
610 |
+
"loss": 1.0759,
|
611 |
+
"step": 4300
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 2.092352092352092,
|
615 |
+
"grad_norm": 0.1226249411702156,
|
616 |
+
"learning_rate": 4.187128412678969e-05,
|
617 |
+
"loss": 1.0742,
|
618 |
+
"step": 4350
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 2.1164021164021163,
|
622 |
+
"grad_norm": 0.12307476997375488,
|
623 |
+
"learning_rate": 3.984062510375155e-05,
|
624 |
+
"loss": 1.0721,
|
625 |
+
"step": 4400
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 2.1404521404521404,
|
629 |
+
"grad_norm": 0.12813834846019745,
|
630 |
+
"learning_rate": 3.7848122588965144e-05,
|
631 |
+
"loss": 1.0726,
|
632 |
+
"step": 4450
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 2.1645021645021645,
|
636 |
+
"grad_norm": 0.13432885706424713,
|
637 |
+
"learning_rate": 3.5895040341217543e-05,
|
638 |
+
"loss": 1.0745,
|
639 |
+
"step": 4500
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 2.1885521885521886,
|
643 |
+
"grad_norm": 0.11649097502231598,
|
644 |
+
"learning_rate": 3.398261711671309e-05,
|
645 |
+
"loss": 1.079,
|
646 |
+
"step": 4550
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 2.2126022126022127,
|
650 |
+
"grad_norm": 0.11140163242816925,
|
651 |
+
"learning_rate": 3.211206588338358e-05,
|
652 |
+
"loss": 1.0748,
|
653 |
+
"step": 4600
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 2.236652236652237,
|
657 |
+
"grad_norm": 0.10978424549102783,
|
658 |
+
"learning_rate": 3.028457305155483e-05,
|
659 |
+
"loss": 1.0726,
|
660 |
+
"step": 4650
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 2.260702260702261,
|
664 |
+
"grad_norm": 0.11395589262247086,
|
665 |
+
"learning_rate": 2.8501297721457422e-05,
|
666 |
+
"loss": 1.0656,
|
667 |
+
"step": 4700
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 2.284752284752285,
|
671 |
+
"grad_norm": 0.10599405318498611,
|
672 |
+
"learning_rate": 2.6763370948059353e-05,
|
673 |
+
"loss": 1.0765,
|
674 |
+
"step": 4750
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 2.3088023088023086,
|
678 |
+
"grad_norm": 0.11157254874706268,
|
679 |
+
"learning_rate": 2.5071895023686442e-05,
|
680 |
+
"loss": 1.0726,
|
681 |
+
"step": 4800
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 2.3328523328523327,
|
685 |
+
"grad_norm": 0.1390163153409958,
|
686 |
+
"learning_rate": 2.342794277888547e-05,
|
687 |
+
"loss": 1.0731,
|
688 |
+
"step": 4850
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 2.356902356902357,
|
692 |
+
"grad_norm": 0.1519329994916916,
|
693 |
+
"learning_rate": 2.1832556901973965e-05,
|
694 |
+
"loss": 1.0704,
|
695 |
+
"step": 4900
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 2.380952380952381,
|
699 |
+
"grad_norm": 0.1278182566165924,
|
700 |
+
"learning_rate": 2.0286749277707782e-05,
|
701 |
+
"loss": 1.0661,
|
702 |
+
"step": 4950
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 2.405002405002405,
|
706 |
+
"grad_norm": 0.10508263111114502,
|
707 |
+
"learning_rate": 1.879150034548588e-05,
|
708 |
+
"loss": 1.0758,
|
709 |
+
"step": 5000
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 2.429052429052429,
|
713 |
+
"grad_norm": 0.09690719097852707,
|
714 |
+
"learning_rate": 1.7347758477500044e-05,
|
715 |
+
"loss": 1.0644,
|
716 |
+
"step": 5050
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 2.4531024531024532,
|
720 |
+
"grad_norm": 0.10174595564603806,
|
721 |
+
"learning_rate": 1.5956439377222798e-05,
|
722 |
+
"loss": 1.0726,
|
723 |
+
"step": 5100
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 2.4771524771524773,
|
727 |
+
"grad_norm": 0.10294167697429657,
|
728 |
+
"learning_rate": 1.4618425498616162e-05,
|
729 |
+
"loss": 1.0655,
|
730 |
+
"step": 5150
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 2.501202501202501,
|
734 |
+
"grad_norm": 0.11103129386901855,
|
735 |
+
"learning_rate": 1.3334565486428996e-05,
|
736 |
+
"loss": 1.0651,
|
737 |
+
"step": 5200
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 2.525252525252525,
|
741 |
+
"grad_norm": 0.10614852607250214,
|
742 |
+
"learning_rate": 1.2105673637938053e-05,
|
743 |
+
"loss": 1.0701,
|
744 |
+
"step": 5250
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 2.549302549302549,
|
748 |
+
"grad_norm": 0.09437720477581024,
|
749 |
+
"learning_rate": 1.0932529386474188e-05,
|
750 |
+
"loss": 1.0673,
|
751 |
+
"step": 5300
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 2.5733525733525733,
|
755 |
+
"grad_norm": 0.0965106412768364,
|
756 |
+
"learning_rate": 9.815876807061264e-06,
|
757 |
+
"loss": 1.0769,
|
758 |
+
"step": 5350
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 2.5974025974025974,
|
762 |
+
"grad_norm": 0.09335634112358093,
|
763 |
+
"learning_rate": 8.756424144481312e-06,
|
764 |
+
"loss": 1.0646,
|
765 |
+
"step": 5400
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 2.6214526214526215,
|
769 |
+
"grad_norm": 0.09890544414520264,
|
770 |
+
"learning_rate": 7.75484336406529e-06,
|
771 |
+
"loss": 1.0757,
|
772 |
+
"step": 5450
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 2.6455026455026456,
|
776 |
+
"grad_norm": 0.09670912474393845,
|
777 |
+
"learning_rate": 6.8117697254943106e-06,
|
778 |
+
"loss": 1.0668,
|
779 |
+
"step": 5500
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 2.6695526695526697,
|
783 |
+
"grad_norm": 0.09898468106985092,
|
784 |
+
"learning_rate": 5.927801379881714e-06,
|
785 |
+
"loss": 1.0745,
|
786 |
+
"step": 5550
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 2.6936026936026938,
|
790 |
+
"grad_norm": 0.08697386831045151,
|
791 |
+
"learning_rate": 5.103498990391509e-06,
|
792 |
+
"loss": 1.0653,
|
793 |
+
"step": 5600
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 2.717652717652718,
|
797 |
+
"grad_norm": 0.09457134455442429,
|
798 |
+
"learning_rate": 4.339385376633775e-06,
|
799 |
+
"loss": 1.0678,
|
800 |
+
"step": 5650
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 2.741702741702742,
|
804 |
+
"grad_norm": 0.09092475473880768,
|
805 |
+
"learning_rate": 3.6359451830626723e-06,
|
806 |
+
"loss": 1.0635,
|
807 |
+
"step": 5700
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 2.7657527657527656,
|
811 |
+
"grad_norm": 0.08736653625965118,
|
812 |
+
"learning_rate": 2.993624571587239e-06,
|
813 |
+
"loss": 1.0639,
|
814 |
+
"step": 5750
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 2.7898027898027897,
|
818 |
+
"grad_norm": 0.09138292819261551,
|
819 |
+
"learning_rate": 2.4128309385900717e-06,
|
820 |
+
"loss": 1.065,
|
821 |
+
"step": 5800
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 2.813852813852814,
|
825 |
+
"grad_norm": 0.08842656016349792,
|
826 |
+
"learning_rate": 1.8939326565333037e-06,
|
827 |
+
"loss": 1.0636,
|
828 |
+
"step": 5850
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 2.837902837902838,
|
832 |
+
"grad_norm": 0.08870802819728851,
|
833 |
+
"learning_rate": 1.437258840315714e-06,
|
834 |
+
"loss": 1.0706,
|
835 |
+
"step": 5900
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 2.861952861952862,
|
839 |
+
"grad_norm": 0.08659425377845764,
|
840 |
+
"learning_rate": 1.0430991385293575e-06,
|
841 |
+
"loss": 1.0673,
|
842 |
+
"step": 5950
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 2.886002886002886,
|
846 |
+
"grad_norm": 0.08142086863517761,
|
847 |
+
"learning_rate": 7.117035497478553e-07,
|
848 |
+
"loss": 1.0697,
|
849 |
+
"step": 6000
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 2.91005291005291,
|
853 |
+
"grad_norm": 0.080448217689991,
|
854 |
+
"learning_rate": 4.432822639630407e-07,
|
855 |
+
"loss": 1.0655,
|
856 |
+
"step": 6050
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 2.934102934102934,
|
860 |
+
"grad_norm": 0.08980288356542587,
|
861 |
+
"learning_rate": 2.380055292704575e-07,
|
862 |
+
"loss": 1.0701,
|
863 |
+
"step": 6100
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 2.958152958152958,
|
867 |
+
"grad_norm": 0.08309097588062286,
|
868 |
+
"learning_rate": 9.600354388833443e-08,
|
869 |
+
"loss": 1.0684,
|
870 |
+
"step": 6150
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 2.982202982202982,
|
874 |
+
"grad_norm": 0.08456841111183167,
|
875 |
+
"learning_rate": 1.7366373578442397e-08,
|
876 |
+
"loss": 1.0684,
|
877 |
+
"step": 6200
|
878 |
+
}
|
879 |
+
],
|
880 |
+
"logging_steps": 50,
|
881 |
+
"max_steps": 6237,
|
882 |
+
"num_input_tokens_seen": 0,
|
883 |
+
"num_train_epochs": 3,
|
884 |
+
"save_steps": 500,
|
885 |
+
"stateful_callbacks": {
|
886 |
+
"TrainerControl": {
|
887 |
+
"args": {
|
888 |
+
"should_epoch_stop": false,
|
889 |
+
"should_evaluate": false,
|
890 |
+
"should_log": false,
|
891 |
+
"should_save": true,
|
892 |
+
"should_training_stop": true
|
893 |
+
},
|
894 |
+
"attributes": {}
|
895 |
+
}
|
896 |
+
},
|
897 |
+
"total_flos": 2.056700790948663e+20,
|
898 |
+
"train_batch_size": 4,
|
899 |
+
"trial_name": null,
|
900 |
+
"trial_params": null
|
901 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0cb09fa3cec0d925b5877a57afba4d17f256716f468a4f84dfa477dd700225e0
|
3 |
+
size 6968
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|