moussaKam commited on
Commit
52a3f37
·
verified ·
1 Parent(s): e6a3a69
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/lustre/fsn1/projects/rech/gkb/uua32zb/grand_challenge/checkpoints/Qwen__Qwen2.5-1.5B-pretraining-fineweb2-0.0001LR-8192CL-1GAS-4BS-1EPOCHS-0.9BETA1-0.95BETA2/",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 1536,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 8960,
13
+ "max_position_embeddings": 131072,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 2,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": true,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.46.1",
26
+ "use_cache": false,
27
+ "use_mrope": false,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 151936
30
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "eos_token_id": 151643,
4
+ "max_new_tokens": 2048,
5
+ "transformers_version": "4.46.1"
6
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step6237
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc5edf1bc45f08dfaeca221b40e789f61302043d25115984818a52a274f213be
3
+ size 3554214752
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "model_max_length": 131072,
203
+ "pad_token": "<|endoftext|>",
204
+ "padding_side": "right",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
trainer_state.json ADDED
@@ -0,0 +1,901 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.0,
5
+ "eval_steps": 500.0,
6
+ "global_step": 6237,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02405002405002405,
13
+ "grad_norm": 0.4139963388442993,
14
+ "learning_rate": 0.00019996828714700116,
15
+ "loss": 1.5971,
16
+ "step": 50
17
+ },
18
+ {
19
+ "epoch": 0.0481000481000481,
20
+ "grad_norm": 0.3423018157482147,
21
+ "learning_rate": 0.00019987316870210547,
22
+ "loss": 1.274,
23
+ "step": 100
24
+ },
25
+ {
26
+ "epoch": 0.07215007215007214,
27
+ "grad_norm": 0.3551710247993469,
28
+ "learning_rate": 0.0001997147049948582,
29
+ "loss": 1.2519,
30
+ "step": 150
31
+ },
32
+ {
33
+ "epoch": 0.0962000962000962,
34
+ "grad_norm": 0.32329073548316956,
35
+ "learning_rate": 0.0001994929965319844,
36
+ "loss": 1.2382,
37
+ "step": 200
38
+ },
39
+ {
40
+ "epoch": 0.12025012025012025,
41
+ "grad_norm": 0.48585018515586853,
42
+ "learning_rate": 0.0001992081839336419,
43
+ "loss": 1.2293,
44
+ "step": 250
45
+ },
46
+ {
47
+ "epoch": 0.1443001443001443,
48
+ "grad_norm": 0.40136224031448364,
49
+ "learning_rate": 0.00019886044784423197,
50
+ "loss": 1.2214,
51
+ "step": 300
52
+ },
53
+ {
54
+ "epoch": 0.16835016835016836,
55
+ "grad_norm": 0.574002206325531,
56
+ "learning_rate": 0.00019845000881782432,
57
+ "loss": 1.2184,
58
+ "step": 350
59
+ },
60
+ {
61
+ "epoch": 0.1924001924001924,
62
+ "grad_norm": 0.4179827570915222,
63
+ "learning_rate": 0.00019797712717826914,
64
+ "loss": 1.2064,
65
+ "step": 400
66
+ },
67
+ {
68
+ "epoch": 0.21645021645021645,
69
+ "grad_norm": 0.33033809065818787,
70
+ "learning_rate": 0.00019744210285408488,
71
+ "loss": 1.2055,
72
+ "step": 450
73
+ },
74
+ {
75
+ "epoch": 0.2405002405002405,
76
+ "grad_norm": 0.2719138562679291,
77
+ "learning_rate": 0.0001968452751882264,
78
+ "loss": 1.2077,
79
+ "step": 500
80
+ },
81
+ {
82
+ "epoch": 0.26455026455026454,
83
+ "grad_norm": 0.29797521233558655,
84
+ "learning_rate": 0.00019618702272285434,
85
+ "loss": 1.2096,
86
+ "step": 550
87
+ },
88
+ {
89
+ "epoch": 0.2886002886002886,
90
+ "grad_norm": 0.3336372673511505,
91
+ "learning_rate": 0.00019546776295924212,
92
+ "loss": 1.2072,
93
+ "step": 600
94
+ },
95
+ {
96
+ "epoch": 0.3126503126503126,
97
+ "grad_norm": 0.26755037903785706,
98
+ "learning_rate": 0.0001946879520929728,
99
+ "loss": 1.1974,
100
+ "step": 650
101
+ },
102
+ {
103
+ "epoch": 0.3367003367003367,
104
+ "grad_norm": 0.36268576979637146,
105
+ "learning_rate": 0.00019384808472459368,
106
+ "loss": 1.2045,
107
+ "step": 700
108
+ },
109
+ {
110
+ "epoch": 0.36075036075036077,
111
+ "grad_norm": 0.3121575713157654,
112
+ "learning_rate": 0.0001929486935459127,
113
+ "loss": 1.1889,
114
+ "step": 750
115
+ },
116
+ {
117
+ "epoch": 0.3848003848003848,
118
+ "grad_norm": 0.3159404993057251,
119
+ "learning_rate": 0.00019199034900213452,
120
+ "loss": 1.1921,
121
+ "step": 800
122
+ },
123
+ {
124
+ "epoch": 0.40885040885040885,
125
+ "grad_norm": 0.7236579060554504,
126
+ "learning_rate": 0.000190973658930052,
127
+ "loss": 1.194,
128
+ "step": 850
129
+ },
130
+ {
131
+ "epoch": 0.4329004329004329,
132
+ "grad_norm": 0.24907168745994568,
133
+ "learning_rate": 0.00018989926817252113,
134
+ "loss": 1.191,
135
+ "step": 900
136
+ },
137
+ {
138
+ "epoch": 0.45695045695045694,
139
+ "grad_norm": 0.24481187760829926,
140
+ "learning_rate": 0.00018876785816946505,
141
+ "loss": 1.1857,
142
+ "step": 950
143
+ },
144
+ {
145
+ "epoch": 0.481000481000481,
146
+ "grad_norm": 0.2668200731277466,
147
+ "learning_rate": 0.00018758014652566597,
148
+ "loss": 1.1957,
149
+ "step": 1000
150
+ },
151
+ {
152
+ "epoch": 0.5050505050505051,
153
+ "grad_norm": 0.2687171399593353,
154
+ "learning_rate": 0.0001863368865556191,
155
+ "loss": 1.1864,
156
+ "step": 1050
157
+ },
158
+ {
159
+ "epoch": 0.5291005291005291,
160
+ "grad_norm": 0.23915782570838928,
161
+ "learning_rate": 0.0001850388668057379,
162
+ "loss": 1.184,
163
+ "step": 1100
164
+ },
165
+ {
166
+ "epoch": 0.5531505531505532,
167
+ "grad_norm": 0.37159469723701477,
168
+ "learning_rate": 0.0001836869105542127,
169
+ "loss": 1.1849,
170
+ "step": 1150
171
+ },
172
+ {
173
+ "epoch": 0.5772005772005772,
174
+ "grad_norm": 0.2752649784088135,
175
+ "learning_rate": 0.0001822818752888408,
176
+ "loss": 1.1843,
177
+ "step": 1200
178
+ },
179
+ {
180
+ "epoch": 0.6012506012506013,
181
+ "grad_norm": 0.19733025133609772,
182
+ "learning_rate": 0.00018082465216315882,
183
+ "loss": 1.1766,
184
+ "step": 1250
185
+ },
186
+ {
187
+ "epoch": 0.6253006253006252,
188
+ "grad_norm": 0.2180165797472,
189
+ "learning_rate": 0.00017931616543122214,
190
+ "loss": 1.1865,
191
+ "step": 1300
192
+ },
193
+ {
194
+ "epoch": 0.6493506493506493,
195
+ "grad_norm": 0.25025510787963867,
196
+ "learning_rate": 0.00017775737186139038,
197
+ "loss": 1.1723,
198
+ "step": 1350
199
+ },
200
+ {
201
+ "epoch": 0.6734006734006734,
202
+ "grad_norm": 0.2865007817745209,
203
+ "learning_rate": 0.00017614926012949028,
204
+ "loss": 1.172,
205
+ "step": 1400
206
+ },
207
+ {
208
+ "epoch": 0.6974506974506974,
209
+ "grad_norm": 0.3406023681163788,
210
+ "learning_rate": 0.00017449285019174098,
211
+ "loss": 1.1795,
212
+ "step": 1450
213
+ },
214
+ {
215
+ "epoch": 0.7215007215007215,
216
+ "grad_norm": 0.19766800105571747,
217
+ "learning_rate": 0.00017278919263783978,
218
+ "loss": 1.1784,
219
+ "step": 1500
220
+ },
221
+ {
222
+ "epoch": 0.7455507455507455,
223
+ "grad_norm": 0.1965962052345276,
224
+ "learning_rate": 0.00017103936802461797,
225
+ "loss": 1.1754,
226
+ "step": 1550
227
+ },
228
+ {
229
+ "epoch": 0.7696007696007696,
230
+ "grad_norm": 0.2381555736064911,
231
+ "learning_rate": 0.00016924448619069023,
232
+ "loss": 1.1671,
233
+ "step": 1600
234
+ },
235
+ {
236
+ "epoch": 0.7936507936507936,
237
+ "grad_norm": 0.20156389474868774,
238
+ "learning_rate": 0.00016740568555253155,
239
+ "loss": 1.1738,
240
+ "step": 1650
241
+ },
242
+ {
243
+ "epoch": 0.8177008177008177,
244
+ "grad_norm": 0.18294361233711243,
245
+ "learning_rate": 0.00016552413238242857,
246
+ "loss": 1.1727,
247
+ "step": 1700
248
+ },
249
+ {
250
+ "epoch": 0.8417508417508418,
251
+ "grad_norm": 0.2975623309612274,
252
+ "learning_rate": 0.00016360102006876317,
253
+ "loss": 1.1677,
254
+ "step": 1750
255
+ },
256
+ {
257
+ "epoch": 0.8658008658008658,
258
+ "grad_norm": 0.1871371865272522,
259
+ "learning_rate": 0.0001616375683590974,
260
+ "loss": 1.1689,
261
+ "step": 1800
262
+ },
263
+ {
264
+ "epoch": 0.8898508898508899,
265
+ "grad_norm": 0.21457934379577637,
266
+ "learning_rate": 0.00015963502258654005,
267
+ "loss": 1.1605,
268
+ "step": 1850
269
+ },
270
+ {
271
+ "epoch": 0.9139009139009139,
272
+ "grad_norm": 0.20261706411838531,
273
+ "learning_rate": 0.0001575946528798853,
274
+ "loss": 1.1627,
275
+ "step": 1900
276
+ },
277
+ {
278
+ "epoch": 0.937950937950938,
279
+ "grad_norm": 0.17685186862945557,
280
+ "learning_rate": 0.0001555177533580245,
281
+ "loss": 1.1627,
282
+ "step": 1950
283
+ },
284
+ {
285
+ "epoch": 0.962000962000962,
286
+ "grad_norm": 0.212468221783638,
287
+ "learning_rate": 0.00015340564130914233,
288
+ "loss": 1.161,
289
+ "step": 2000
290
+ },
291
+ {
292
+ "epoch": 0.9860509860509861,
293
+ "grad_norm": 0.175174742937088,
294
+ "learning_rate": 0.00015125965635521724,
295
+ "loss": 1.1688,
296
+ "step": 2050
297
+ },
298
+ {
299
+ "epoch": 1.0101010101010102,
300
+ "grad_norm": 0.19970253109931946,
301
+ "learning_rate": 0.00014908115960235682,
302
+ "loss": 1.142,
303
+ "step": 2100
304
+ },
305
+ {
306
+ "epoch": 1.034151034151034,
307
+ "grad_norm": 0.21254608035087585,
308
+ "learning_rate": 0.00014687153277750676,
309
+ "loss": 1.1271,
310
+ "step": 2150
311
+ },
312
+ {
313
+ "epoch": 1.0582010582010581,
314
+ "grad_norm": 0.1651500016450882,
315
+ "learning_rate": 0.00014463217735208062,
316
+ "loss": 1.121,
317
+ "step": 2200
318
+ },
319
+ {
320
+ "epoch": 1.0822510822510822,
321
+ "grad_norm": 0.2405405044555664,
322
+ "learning_rate": 0.00014236451365306674,
323
+ "loss": 1.1313,
324
+ "step": 2250
325
+ },
326
+ {
327
+ "epoch": 1.1063011063011063,
328
+ "grad_norm": 0.17223596572875977,
329
+ "learning_rate": 0.00014006997996217593,
330
+ "loss": 1.1344,
331
+ "step": 2300
332
+ },
333
+ {
334
+ "epoch": 1.1303511303511304,
335
+ "grad_norm": 0.1969347894191742,
336
+ "learning_rate": 0.00013775003160360096,
337
+ "loss": 1.1176,
338
+ "step": 2350
339
+ },
340
+ {
341
+ "epoch": 1.1544011544011543,
342
+ "grad_norm": 0.187143936753273,
343
+ "learning_rate": 0.00013540614002096701,
344
+ "loss": 1.1322,
345
+ "step": 2400
346
+ },
347
+ {
348
+ "epoch": 1.1784511784511784,
349
+ "grad_norm": 0.1838238537311554,
350
+ "learning_rate": 0.00013303979184405826,
351
+ "loss": 1.1293,
352
+ "step": 2450
353
+ },
354
+ {
355
+ "epoch": 1.2025012025012025,
356
+ "grad_norm": 0.17928341031074524,
357
+ "learning_rate": 0.00013065248794591223,
358
+ "loss": 1.1268,
359
+ "step": 2500
360
+ },
361
+ {
362
+ "epoch": 1.2265512265512266,
363
+ "grad_norm": 0.2683047950267792,
364
+ "learning_rate": 0.00012824574249088063,
365
+ "loss": 1.1234,
366
+ "step": 2550
367
+ },
368
+ {
369
+ "epoch": 1.2506012506012505,
370
+ "grad_norm": 0.18034860491752625,
371
+ "learning_rate": 0.0001258210819742599,
372
+ "loss": 1.125,
373
+ "step": 2600
374
+ },
375
+ {
376
+ "epoch": 1.2746512746512746,
377
+ "grad_norm": 0.26357391476631165,
378
+ "learning_rate": 0.00012338004425410074,
379
+ "loss": 1.1217,
380
+ "step": 2650
381
+ },
382
+ {
383
+ "epoch": 1.2987012987012987,
384
+ "grad_norm": 0.17828579246997833,
385
+ "learning_rate": 0.00012092417757581085,
386
+ "loss": 1.1262,
387
+ "step": 2700
388
+ },
389
+ {
390
+ "epoch": 1.3227513227513228,
391
+ "grad_norm": 0.20247310400009155,
392
+ "learning_rate": 0.00011845503959016928,
393
+ "loss": 1.1246,
394
+ "step": 2750
395
+ },
396
+ {
397
+ "epoch": 1.3468013468013469,
398
+ "grad_norm": 0.17381271719932556,
399
+ "learning_rate": 0.0001159741963653755,
400
+ "loss": 1.1181,
401
+ "step": 2800
402
+ },
403
+ {
404
+ "epoch": 1.370851370851371,
405
+ "grad_norm": 0.19958114624023438,
406
+ "learning_rate": 0.00011348322139375948,
407
+ "loss": 1.1307,
408
+ "step": 2850
409
+ },
410
+ {
411
+ "epoch": 1.3949013949013949,
412
+ "grad_norm": 0.21912401914596558,
413
+ "learning_rate": 0.00011098369459378328,
414
+ "loss": 1.1264,
415
+ "step": 2900
416
+ },
417
+ {
418
+ "epoch": 1.418951418951419,
419
+ "grad_norm": 0.1694297194480896,
420
+ "learning_rate": 0.00010847720130796631,
421
+ "loss": 1.1256,
422
+ "step": 2950
423
+ },
424
+ {
425
+ "epoch": 1.443001443001443,
426
+ "grad_norm": 0.13446395099163055,
427
+ "learning_rate": 0.00010596533129737092,
428
+ "loss": 1.1258,
429
+ "step": 3000
430
+ },
431
+ {
432
+ "epoch": 1.467051467051467,
433
+ "grad_norm": 0.140371173620224,
434
+ "learning_rate": 0.00010344967773328507,
435
+ "loss": 1.1191,
436
+ "step": 3050
437
+ },
438
+ {
439
+ "epoch": 1.491101491101491,
440
+ "grad_norm": 0.18016813695430756,
441
+ "learning_rate": 0.00010093183618674224,
442
+ "loss": 1.114,
443
+ "step": 3100
444
+ },
445
+ {
446
+ "epoch": 1.5151515151515151,
447
+ "grad_norm": 0.17306862771511078,
448
+ "learning_rate": 9.84134036165192e-05,
449
+ "loss": 1.1149,
450
+ "step": 3150
451
+ },
452
+ {
453
+ "epoch": 1.5392015392015392,
454
+ "grad_norm": 0.14116255939006805,
455
+ "learning_rate": 9.589597735625377e-05,
456
+ "loss": 1.123,
457
+ "step": 3200
458
+ },
459
+ {
460
+ "epoch": 1.5632515632515633,
461
+ "grad_norm": 0.16819800436496735,
462
+ "learning_rate": 9.338115410132441e-05,
463
+ "loss": 1.1203,
464
+ "step": 3250
465
+ },
466
+ {
467
+ "epoch": 1.5873015873015874,
468
+ "grad_norm": 0.21958529949188232,
469
+ "learning_rate": 9.087052889613518e-05,
470
+ "loss": 1.1226,
471
+ "step": 3300
472
+ },
473
+ {
474
+ "epoch": 1.6113516113516113,
475
+ "grad_norm": 0.15786272287368774,
476
+ "learning_rate": 8.836569412244745e-05,
477
+ "loss": 1.1212,
478
+ "step": 3350
479
+ },
480
+ {
481
+ "epoch": 1.6354016354016354,
482
+ "grad_norm": 0.17366796731948853,
483
+ "learning_rate": 8.586823848940047e-05,
484
+ "loss": 1.1129,
485
+ "step": 3400
486
+ },
487
+ {
488
+ "epoch": 1.6594516594516593,
489
+ "grad_norm": 0.21448016166687012,
490
+ "learning_rate": 8.337974602586152e-05,
491
+ "loss": 1.1216,
492
+ "step": 3450
493
+ },
494
+ {
495
+ "epoch": 1.6835016835016834,
496
+ "grad_norm": 0.17243099212646484,
497
+ "learning_rate": 8.090179507574427e-05,
498
+ "loss": 1.1096,
499
+ "step": 3500
500
+ },
501
+ {
502
+ "epoch": 1.7075517075517075,
503
+ "grad_norm": 0.1429734081029892,
504
+ "learning_rate": 7.843595729693316e-05,
505
+ "loss": 1.1071,
506
+ "step": 3550
507
+ },
508
+ {
509
+ "epoch": 1.7316017316017316,
510
+ "grad_norm": 0.15200386941432953,
511
+ "learning_rate": 7.598379666444808e-05,
512
+ "loss": 1.1158,
513
+ "step": 3600
514
+ },
515
+ {
516
+ "epoch": 1.7556517556517557,
517
+ "grad_norm": 0.1442406326532364,
518
+ "learning_rate": 7.354686847848242e-05,
519
+ "loss": 1.112,
520
+ "step": 3650
521
+ },
522
+ {
523
+ "epoch": 1.7797017797017798,
524
+ "grad_norm": 0.17678239941596985,
525
+ "learning_rate": 7.11267183779428e-05,
526
+ "loss": 1.1118,
527
+ "step": 3700
528
+ },
529
+ {
530
+ "epoch": 1.8037518037518039,
531
+ "grad_norm": 0.147593155503273,
532
+ "learning_rate": 6.872488136011667e-05,
533
+ "loss": 1.1165,
534
+ "step": 3750
535
+ },
536
+ {
537
+ "epoch": 1.8278018278018278,
538
+ "grad_norm": 0.1334652155637741,
539
+ "learning_rate": 6.634288080708952e-05,
540
+ "loss": 1.1135,
541
+ "step": 3800
542
+ },
543
+ {
544
+ "epoch": 1.8518518518518519,
545
+ "grad_norm": 0.14890378713607788,
546
+ "learning_rate": 6.398222751952899e-05,
547
+ "loss": 1.1086,
548
+ "step": 3850
549
+ },
550
+ {
551
+ "epoch": 1.8759018759018757,
552
+ "grad_norm": 0.1334807574748993,
553
+ "learning_rate": 6.164441875844882e-05,
554
+ "loss": 1.1144,
555
+ "step": 3900
556
+ },
557
+ {
558
+ "epoch": 1.8999518999518998,
559
+ "grad_norm": 0.12897680699825287,
560
+ "learning_rate": 5.933093729556062e-05,
561
+ "loss": 1.1116,
562
+ "step": 3950
563
+ },
564
+ {
565
+ "epoch": 1.924001924001924,
566
+ "grad_norm": 0.17530564963817596,
567
+ "learning_rate": 5.7043250472815356e-05,
568
+ "loss": 1.1039,
569
+ "step": 4000
570
+ },
571
+ {
572
+ "epoch": 1.948051948051948,
573
+ "grad_norm": 0.15966495871543884,
574
+ "learning_rate": 5.478280927173145e-05,
575
+ "loss": 1.101,
576
+ "step": 4050
577
+ },
578
+ {
579
+ "epoch": 1.9721019721019721,
580
+ "grad_norm": 0.18890446424484253,
581
+ "learning_rate": 5.255104739309924e-05,
582
+ "loss": 1.1077,
583
+ "step": 4100
584
+ },
585
+ {
586
+ "epoch": 1.9961519961519962,
587
+ "grad_norm": 0.1547369807958603,
588
+ "learning_rate": 5.0349380347646494e-05,
589
+ "loss": 1.103,
590
+ "step": 4150
591
+ },
592
+ {
593
+ "epoch": 2.0202020202020203,
594
+ "grad_norm": 0.13888758420944214,
595
+ "learning_rate": 4.8179204558240444e-05,
596
+ "loss": 1.0826,
597
+ "step": 4200
598
+ },
599
+ {
600
+ "epoch": 2.0442520442520444,
601
+ "grad_norm": 0.11266086250543594,
602
+ "learning_rate": 4.6041896474197e-05,
603
+ "loss": 1.071,
604
+ "step": 4250
605
+ },
606
+ {
607
+ "epoch": 2.068302068302068,
608
+ "grad_norm": 0.14245671033859253,
609
+ "learning_rate": 4.393881169825779e-05,
610
+ "loss": 1.0759,
611
+ "step": 4300
612
+ },
613
+ {
614
+ "epoch": 2.092352092352092,
615
+ "grad_norm": 0.1226249411702156,
616
+ "learning_rate": 4.187128412678969e-05,
617
+ "loss": 1.0742,
618
+ "step": 4350
619
+ },
620
+ {
621
+ "epoch": 2.1164021164021163,
622
+ "grad_norm": 0.12307476997375488,
623
+ "learning_rate": 3.984062510375155e-05,
624
+ "loss": 1.0721,
625
+ "step": 4400
626
+ },
627
+ {
628
+ "epoch": 2.1404521404521404,
629
+ "grad_norm": 0.12813834846019745,
630
+ "learning_rate": 3.7848122588965144e-05,
631
+ "loss": 1.0726,
632
+ "step": 4450
633
+ },
634
+ {
635
+ "epoch": 2.1645021645021645,
636
+ "grad_norm": 0.13432885706424713,
637
+ "learning_rate": 3.5895040341217543e-05,
638
+ "loss": 1.0745,
639
+ "step": 4500
640
+ },
641
+ {
642
+ "epoch": 2.1885521885521886,
643
+ "grad_norm": 0.11649097502231598,
644
+ "learning_rate": 3.398261711671309e-05,
645
+ "loss": 1.079,
646
+ "step": 4550
647
+ },
648
+ {
649
+ "epoch": 2.2126022126022127,
650
+ "grad_norm": 0.11140163242816925,
651
+ "learning_rate": 3.211206588338358e-05,
652
+ "loss": 1.0748,
653
+ "step": 4600
654
+ },
655
+ {
656
+ "epoch": 2.236652236652237,
657
+ "grad_norm": 0.10978424549102783,
658
+ "learning_rate": 3.028457305155483e-05,
659
+ "loss": 1.0726,
660
+ "step": 4650
661
+ },
662
+ {
663
+ "epoch": 2.260702260702261,
664
+ "grad_norm": 0.11395589262247086,
665
+ "learning_rate": 2.8501297721457422e-05,
666
+ "loss": 1.0656,
667
+ "step": 4700
668
+ },
669
+ {
670
+ "epoch": 2.284752284752285,
671
+ "grad_norm": 0.10599405318498611,
672
+ "learning_rate": 2.6763370948059353e-05,
673
+ "loss": 1.0765,
674
+ "step": 4750
675
+ },
676
+ {
677
+ "epoch": 2.3088023088023086,
678
+ "grad_norm": 0.11157254874706268,
679
+ "learning_rate": 2.5071895023686442e-05,
680
+ "loss": 1.0726,
681
+ "step": 4800
682
+ },
683
+ {
684
+ "epoch": 2.3328523328523327,
685
+ "grad_norm": 0.1390163153409958,
686
+ "learning_rate": 2.342794277888547e-05,
687
+ "loss": 1.0731,
688
+ "step": 4850
689
+ },
690
+ {
691
+ "epoch": 2.356902356902357,
692
+ "grad_norm": 0.1519329994916916,
693
+ "learning_rate": 2.1832556901973965e-05,
694
+ "loss": 1.0704,
695
+ "step": 4900
696
+ },
697
+ {
698
+ "epoch": 2.380952380952381,
699
+ "grad_norm": 0.1278182566165924,
700
+ "learning_rate": 2.0286749277707782e-05,
701
+ "loss": 1.0661,
702
+ "step": 4950
703
+ },
704
+ {
705
+ "epoch": 2.405002405002405,
706
+ "grad_norm": 0.10508263111114502,
707
+ "learning_rate": 1.879150034548588e-05,
708
+ "loss": 1.0758,
709
+ "step": 5000
710
+ },
711
+ {
712
+ "epoch": 2.429052429052429,
713
+ "grad_norm": 0.09690719097852707,
714
+ "learning_rate": 1.7347758477500044e-05,
715
+ "loss": 1.0644,
716
+ "step": 5050
717
+ },
718
+ {
719
+ "epoch": 2.4531024531024532,
720
+ "grad_norm": 0.10174595564603806,
721
+ "learning_rate": 1.5956439377222798e-05,
722
+ "loss": 1.0726,
723
+ "step": 5100
724
+ },
725
+ {
726
+ "epoch": 2.4771524771524773,
727
+ "grad_norm": 0.10294167697429657,
728
+ "learning_rate": 1.4618425498616162e-05,
729
+ "loss": 1.0655,
730
+ "step": 5150
731
+ },
732
+ {
733
+ "epoch": 2.501202501202501,
734
+ "grad_norm": 0.11103129386901855,
735
+ "learning_rate": 1.3334565486428996e-05,
736
+ "loss": 1.0651,
737
+ "step": 5200
738
+ },
739
+ {
740
+ "epoch": 2.525252525252525,
741
+ "grad_norm": 0.10614852607250214,
742
+ "learning_rate": 1.2105673637938053e-05,
743
+ "loss": 1.0701,
744
+ "step": 5250
745
+ },
746
+ {
747
+ "epoch": 2.549302549302549,
748
+ "grad_norm": 0.09437720477581024,
749
+ "learning_rate": 1.0932529386474188e-05,
750
+ "loss": 1.0673,
751
+ "step": 5300
752
+ },
753
+ {
754
+ "epoch": 2.5733525733525733,
755
+ "grad_norm": 0.0965106412768364,
756
+ "learning_rate": 9.815876807061264e-06,
757
+ "loss": 1.0769,
758
+ "step": 5350
759
+ },
760
+ {
761
+ "epoch": 2.5974025974025974,
762
+ "grad_norm": 0.09335634112358093,
763
+ "learning_rate": 8.756424144481312e-06,
764
+ "loss": 1.0646,
765
+ "step": 5400
766
+ },
767
+ {
768
+ "epoch": 2.6214526214526215,
769
+ "grad_norm": 0.09890544414520264,
770
+ "learning_rate": 7.75484336406529e-06,
771
+ "loss": 1.0757,
772
+ "step": 5450
773
+ },
774
+ {
775
+ "epoch": 2.6455026455026456,
776
+ "grad_norm": 0.09670912474393845,
777
+ "learning_rate": 6.8117697254943106e-06,
778
+ "loss": 1.0668,
779
+ "step": 5500
780
+ },
781
+ {
782
+ "epoch": 2.6695526695526697,
783
+ "grad_norm": 0.09898468106985092,
784
+ "learning_rate": 5.927801379881714e-06,
785
+ "loss": 1.0745,
786
+ "step": 5550
787
+ },
788
+ {
789
+ "epoch": 2.6936026936026938,
790
+ "grad_norm": 0.08697386831045151,
791
+ "learning_rate": 5.103498990391509e-06,
792
+ "loss": 1.0653,
793
+ "step": 5600
794
+ },
795
+ {
796
+ "epoch": 2.717652717652718,
797
+ "grad_norm": 0.09457134455442429,
798
+ "learning_rate": 4.339385376633775e-06,
799
+ "loss": 1.0678,
800
+ "step": 5650
801
+ },
802
+ {
803
+ "epoch": 2.741702741702742,
804
+ "grad_norm": 0.09092475473880768,
805
+ "learning_rate": 3.6359451830626723e-06,
806
+ "loss": 1.0635,
807
+ "step": 5700
808
+ },
809
+ {
810
+ "epoch": 2.7657527657527656,
811
+ "grad_norm": 0.08736653625965118,
812
+ "learning_rate": 2.993624571587239e-06,
813
+ "loss": 1.0639,
814
+ "step": 5750
815
+ },
816
+ {
817
+ "epoch": 2.7898027898027897,
818
+ "grad_norm": 0.09138292819261551,
819
+ "learning_rate": 2.4128309385900717e-06,
820
+ "loss": 1.065,
821
+ "step": 5800
822
+ },
823
+ {
824
+ "epoch": 2.813852813852814,
825
+ "grad_norm": 0.08842656016349792,
826
+ "learning_rate": 1.8939326565333037e-06,
827
+ "loss": 1.0636,
828
+ "step": 5850
829
+ },
830
+ {
831
+ "epoch": 2.837902837902838,
832
+ "grad_norm": 0.08870802819728851,
833
+ "learning_rate": 1.437258840315714e-06,
834
+ "loss": 1.0706,
835
+ "step": 5900
836
+ },
837
+ {
838
+ "epoch": 2.861952861952862,
839
+ "grad_norm": 0.08659425377845764,
840
+ "learning_rate": 1.0430991385293575e-06,
841
+ "loss": 1.0673,
842
+ "step": 5950
843
+ },
844
+ {
845
+ "epoch": 2.886002886002886,
846
+ "grad_norm": 0.08142086863517761,
847
+ "learning_rate": 7.117035497478553e-07,
848
+ "loss": 1.0697,
849
+ "step": 6000
850
+ },
851
+ {
852
+ "epoch": 2.91005291005291,
853
+ "grad_norm": 0.080448217689991,
854
+ "learning_rate": 4.432822639630407e-07,
855
+ "loss": 1.0655,
856
+ "step": 6050
857
+ },
858
+ {
859
+ "epoch": 2.934102934102934,
860
+ "grad_norm": 0.08980288356542587,
861
+ "learning_rate": 2.380055292704575e-07,
862
+ "loss": 1.0701,
863
+ "step": 6100
864
+ },
865
+ {
866
+ "epoch": 2.958152958152958,
867
+ "grad_norm": 0.08309097588062286,
868
+ "learning_rate": 9.600354388833443e-08,
869
+ "loss": 1.0684,
870
+ "step": 6150
871
+ },
872
+ {
873
+ "epoch": 2.982202982202982,
874
+ "grad_norm": 0.08456841111183167,
875
+ "learning_rate": 1.7366373578442397e-08,
876
+ "loss": 1.0684,
877
+ "step": 6200
878
+ }
879
+ ],
880
+ "logging_steps": 50,
881
+ "max_steps": 6237,
882
+ "num_input_tokens_seen": 0,
883
+ "num_train_epochs": 3,
884
+ "save_steps": 500,
885
+ "stateful_callbacks": {
886
+ "TrainerControl": {
887
+ "args": {
888
+ "should_epoch_stop": false,
889
+ "should_evaluate": false,
890
+ "should_log": false,
891
+ "should_save": true,
892
+ "should_training_stop": true
893
+ },
894
+ "attributes": {}
895
+ }
896
+ },
897
+ "total_flos": 2.056700790948663e+20,
898
+ "train_batch_size": 4,
899
+ "trial_name": null,
900
+ "trial_params": null
901
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cb09fa3cec0d925b5877a57afba4d17f256716f468a4f84dfa477dd700225e0
3
+ size 6968
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)