File size: 2,927 Bytes
43aea54
 
 
 
 
 
 
 
 
 
 
 
a14abd9
 
 
 
 
 
43aea54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49ed144
43aea54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
base_model: deepseek-ai/DeepSeek-Coder-V2-Instruct
language:
- en
library_name: transformers
license: other
license_link: LICENSE
license_name: deepseek-license
quantized_by: mradermacher
---
## About

<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type:  -->
<!-- ### tags:  -->
static quants of https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Instruct

<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/DeepSeek-Coder-V2-Instruct-i1-GGUF
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [PART 1](https://huggingface.co/mradermacher/DeepSeek-Coder-V2-Instruct-GGUF/resolve/main/DeepSeek-Coder-V2-Instruct.IQ3_S.gguf.part1of3) [PART 2](https://huggingface.co/mradermacher/DeepSeek-Coder-V2-Instruct-GGUF/resolve/main/DeepSeek-Coder-V2-Instruct.IQ3_S.gguf.part2of3) [PART 3](https://huggingface.co/mradermacher/DeepSeek-Coder-V2-Instruct-GGUF/resolve/main/DeepSeek-Coder-V2-Instruct.IQ3_S.gguf.part3of3) | IQ3_S | 101.8 | beats Q3_K* |
| [P1](https://huggingface.co/mradermacher/DeepSeek-Coder-V2-Instruct-GGUF/resolve/main/DeepSeek-Coder-V2-Instruct.Q8_0.gguf.part1of6) [P2](https://huggingface.co/mradermacher/DeepSeek-Coder-V2-Instruct-GGUF/resolve/main/DeepSeek-Coder-V2-Instruct.Q8_0.gguf.part2of6) [P3](https://huggingface.co/mradermacher/DeepSeek-Coder-V2-Instruct-GGUF/resolve/main/DeepSeek-Coder-V2-Instruct.Q8_0.gguf.part3of6) [P4](https://huggingface.co/mradermacher/DeepSeek-Coder-V2-Instruct-GGUF/resolve/main/DeepSeek-Coder-V2-Instruct.Q8_0.gguf.part4of6) [P5](https://huggingface.co/mradermacher/DeepSeek-Coder-V2-Instruct-GGUF/resolve/main/DeepSeek-Coder-V2-Instruct.Q8_0.gguf.part5of6) [P6](https://huggingface.co/mradermacher/DeepSeek-Coder-V2-Instruct-GGUF/resolve/main/DeepSeek-Coder-V2-Instruct.Q8_0.gguf.part6of6) | Q8_0 | 250.7 | fast, best quality |

Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.

<!-- end -->