--- base_model: CalamitousFelicitousness/EVA-Qwen2.5-72B-v0.2-padded datasets: - anthracite-org/kalo-opus-instruct-22k-no-refusal - Nopm/Opus_WritingStruct - Gryphe/Sonnet3.5-SlimOrcaDedupCleaned - Gryphe/Sonnet3.5-Charcard-Roleplay - Gryphe/ChatGPT-4o-Writing-Prompts - Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned - Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned - nothingiisreal/Reddit-Dirty-And-WritingPrompts - allura-org/Celeste-1.x-data-mixture - cognitivecomputations/dolphin-2.9.3 language: - en library_name: transformers license: other license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE license_name: qwen quantized_by: mradermacher tags: - generated_from_trainer --- ## About weighted/imatrix quants of https://huggingface.co/CalamitousFelicitousness/EVA-Qwen2.5-72B-v0.2-padded static quants are available at https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.i1-IQ1_S.gguf) | i1-IQ1_S | 16.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.i1-IQ1_M.gguf) | i1-IQ1_M | 17.5 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 19.9 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.i1-IQ2_XS.gguf) | i1-IQ2_XS | 22.0 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.i1-IQ2_S.gguf) | i1-IQ2_S | 23.2 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.i1-IQ2_M.gguf) | i1-IQ2_M | 25.1 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.i1-Q2_K.gguf) | i1-Q2_K | 27.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 28.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.i1-IQ3_XS.gguf) | i1-IQ3_XS | 30.5 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.i1-IQ3_S.gguf) | i1-IQ3_S | 32.1 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.i1-Q3_K_S.gguf) | i1-Q3_K_S | 32.1 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.i1-IQ3_M.gguf) | i1-IQ3_M | 33.2 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.i1-Q3_K_M.gguf) | i1-Q3_K_M | 35.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.i1-Q3_K_L.gguf) | i1-Q3_K_L | 38.5 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.i1-IQ4_XS.gguf) | i1-IQ4_XS | 39.3 | | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.i1-Q4_0.gguf) | i1-Q4_0 | 41.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.i1-Q4_K_S.gguf) | i1-Q4_K_S | 41.9 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.i1-Q4_K_M.gguf) | i1-Q4_K_M | 44.1 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.i1-Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.i1-Q5_K_S.gguf.part2of2) | i1-Q5_K_S | 50.4 | | | [PART 1](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.i1-Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.i1-Q5_K_M.gguf.part2of2) | i1-Q5_K_M | 51.8 | | | [PART 1](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/EVA-Qwen2.5-72B-v0.2-padded-i1-GGUF/resolve/main/EVA-Qwen2.5-72B-v0.2-padded.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 60.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.