--- exported_from: ValiantLabs/Llama3-70B-ShiningValiant2 language: - en library_name: transformers license: other license_link: https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct/blob/main/LICENSE license_name: llama3 model_type: llama quantized_by: mradermacher tags: - shining-valiant - shining-valiant-2 - valiant - valiant-labs - llama - llama-3 - llama-3-instruct - llama-3-instruct-70b - 70b - conversational - chat - instruct --- ## About static quants of https://huggingface.co/ValiantLabs/Llama3-70B-ShiningValiant2 weighted/imatrix quants are available at https://huggingface.co/mradermacher/Llama3-70B-ShiningValiant2-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama3-70B-ShiningValiant2-GGUF/resolve/main/Llama3-70B-ShiningValiant2.Q2_K.gguf) | Q2_K | 26.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama3-70B-ShiningValiant2-GGUF/resolve/main/Llama3-70B-ShiningValiant2.IQ3_XS.gguf) | IQ3_XS | 29.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama3-70B-ShiningValiant2-GGUF/resolve/main/Llama3-70B-ShiningValiant2.IQ3_S.gguf) | IQ3_S | 31.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Llama3-70B-ShiningValiant2-GGUF/resolve/main/Llama3-70B-ShiningValiant2.Q3_K_S.gguf) | Q3_K_S | 31.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama3-70B-ShiningValiant2-GGUF/resolve/main/Llama3-70B-ShiningValiant2.IQ3_M.gguf) | IQ3_M | 32.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama3-70B-ShiningValiant2-GGUF/resolve/main/Llama3-70B-ShiningValiant2.Q3_K_M.gguf) | Q3_K_M | 34.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama3-70B-ShiningValiant2-GGUF/resolve/main/Llama3-70B-ShiningValiant2.Q3_K_L.gguf) | Q3_K_L | 37.2 | | | [GGUF](https://huggingface.co/mradermacher/Llama3-70B-ShiningValiant2-GGUF/resolve/main/Llama3-70B-ShiningValiant2.IQ4_XS.gguf) | IQ4_XS | 38.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama3-70B-ShiningValiant2-GGUF/resolve/main/Llama3-70B-ShiningValiant2.Q4_K_S.gguf) | Q4_K_S | 40.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama3-70B-ShiningValiant2-GGUF/resolve/main/Llama3-70B-ShiningValiant2.Q4_K_M.gguf) | Q4_K_M | 42.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama3-70B-ShiningValiant2-GGUF/resolve/main/Llama3-70B-ShiningValiant2.Q5_K_S.gguf) | Q5_K_S | 48.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama3-70B-ShiningValiant2-GGUF/resolve/main/Llama3-70B-ShiningValiant2.Q5_K_M.gguf) | Q5_K_M | 50.1 | | | [PART 1](https://huggingface.co/mradermacher/Llama3-70B-ShiningValiant2-GGUF/resolve/main/Llama3-70B-ShiningValiant2.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama3-70B-ShiningValiant2-GGUF/resolve/main/Llama3-70B-ShiningValiant2.Q6_K.gguf.part2of2) | Q6_K | 58.0 | very good quality | | [PART 1](https://huggingface.co/mradermacher/Llama3-70B-ShiningValiant2-GGUF/resolve/main/Llama3-70B-ShiningValiant2.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama3-70B-ShiningValiant2-GGUF/resolve/main/Llama3-70B-ShiningValiant2.Q8_0.gguf.part2of2) | Q8_0 | 75.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.