File size: 3,594 Bytes
a7a7038 a0eb51b a7a7038 a0eb51b a7a7038 58dd59d a7a7038 6e5d5af 58dd59d 6e5d5af 45bcda8 6e5d5af f1acd37 6e5d5af 176c387 6e5d5af 176c387 6e5d5af 58dd59d 1e64cb2 45bcda8 1e64cb2 45bcda8 9fe17e7 6e5d5af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
language:
- en
library_name: transformers
license: llama2
quantized_by: mradermacher
---
## About
Weighted imatrix quantize of https://huggingface.co/sophosympatheia/Midnight-Rose-103B-v2.0.3
The weight was calculated using an experimental (potentially crappy) method that is iterative (thus the "i1"), using 270k semi-random english tokens.
<!-- provided-files -->
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Midnight-Rose-103B-v2.0.3-i1-GGUF/resolve/main/Midnight-Rose-103B-v2.0.3.i1-IQ1_S.gguf) | i1-IQ1_S | 22.0 | |
| [GGUF](https://huggingface.co/mradermacher/Midnight-Rose-103B-v2.0.3-i1-GGUF/resolve/main/Midnight-Rose-103B-v2.0.3.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 27.6 | |
| [GGUF](https://huggingface.co/mradermacher/Midnight-Rose-103B-v2.0.3-i1-GGUF/resolve/main/Midnight-Rose-103B-v2.0.3.i1-IQ2_XS.gguf) | i1-IQ2_XS | 30.7 | |
| [GGUF](https://huggingface.co/mradermacher/Midnight-Rose-103B-v2.0.3-i1-GGUF/resolve/main/Midnight-Rose-103B-v2.0.3.i1-Q2_K.gguf) | i1-Q2_K | 38.2 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Midnight-Rose-103B-v2.0.3-i1-GGUF/resolve/main/Midnight-Rose-103B-v2.0.3.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 40.5 | fast, lower quality |
| [GGUF](https://huggingface.co/mradermacher/Midnight-Rose-103B-v2.0.3-i1-GGUF/resolve/main/Midnight-Rose-103B-v2.0.3.i1-Q3_K_XS.gguf) | i1-Q3_K_XS | 42.3 | |
| [GGUF](https://huggingface.co/mradermacher/Midnight-Rose-103B-v2.0.3-i1-GGUF/resolve/main/Midnight-Rose-103B-v2.0.3.i1-Q3_K_S.gguf) | i1-Q3_K_S | 44.8 | IQ3_XS probably better |
| [PART 1](https://huggingface.co/mradermacher/Midnight-Rose-103B-v2.0.3-i1-GGUF/resolve/main/Midnight-Rose-103B-v2.0.3.i1-Q3_K_M.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/Midnight-Rose-103B-v2.0.3-i1-GGUF/resolve/main/Midnight-Rose-103B-v2.0.3.i1-Q3_K_M.gguf.split-ab) | i1-Q3_K_M | 49.9 | IQ3_S probably better |
| [PART 1](https://huggingface.co/mradermacher/Midnight-Rose-103B-v2.0.3-i1-GGUF/resolve/main/Midnight-Rose-103B-v2.0.3.i1-Q3_K_L.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/Midnight-Rose-103B-v2.0.3-i1-GGUF/resolve/main/Midnight-Rose-103B-v2.0.3.i1-Q3_K_L.gguf.split-ab) | i1-Q3_K_L | 54.4 | IQ3_M probably better |
| [PART 1](https://huggingface.co/mradermacher/Midnight-Rose-103B-v2.0.3-i1-GGUF/resolve/main/Midnight-Rose-103B-v2.0.3.i1-Q4_K_S.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/Midnight-Rose-103B-v2.0.3-i1-GGUF/resolve/main/Midnight-Rose-103B-v2.0.3.i1-Q4_K_S.gguf.split-ab) | i1-Q4_K_S | 58.9 | almost as good as Q4_K_M |
| [PART 1](https://huggingface.co/mradermacher/Midnight-Rose-103B-v2.0.3-i1-GGUF/resolve/main/Midnight-Rose-103B-v2.0.3.i1-Q4_K_M.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/Midnight-Rose-103B-v2.0.3-i1-GGUF/resolve/main/Midnight-Rose-103B-v2.0.3.i1-Q4_K_M.gguf.split-ab) | i1-Q4_K_M | 62.2 | fast, medium quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
<!-- end -->
|