File size: 5,876 Bytes
417d98b
8f8abaf
417d98b
 
c9f4bb4
 
 
 
417d98b
8ad45c8
417d98b
 
 
 
 
7a34c55
 
dcd2492
 
 
417d98b
 
df623d5
7a34c55
 
 
 
 
 
417d98b
 
68b0753
 
417d98b
 
94ade17
3d59dc2
94ade17
3d59dc2
94ade17
3d59dc2
94ade17
 
3d59dc2
94d1c5c
c9f4bb4
94d1c5c
94ade17
 
 
 
417d98b
0a202bb
 
68b0753
0a202bb
68b0753
b2eb597
 
 
8f8abaf
 
 
 
 
baf3880
 
 
 
 
 
417d98b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
base_model: wolfram/miquliz-120b-v2.0
language:
- en
- de
- fr
- es
- it
library_name: transformers
license: other
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About

static quants of https://huggingface.co/wolfram/miquliz-120b-v2.0

While other static and imatrix quants are available already, I wanted a wider selection of quants available for this model.

<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/miquliz-120b-v2.0-i1-GGUF
## Usage

If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.

## Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.Q2_K.gguf) | Q2_K | 44.6 |  |
| [GGUF](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.IQ3_XS.gguf) | IQ3_XS | 49.3 |  |
| [PART 1](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.Q3_K_XS.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.Q3_K_XS.gguf.split-ab) | Q3_K_XS | 49.3 |  |
| [PART 1](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.IQ3_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.IQ3_S.gguf.part2of2) | IQ3_S | 52.1 | beats Q3_K* |
| [PART 1](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.Q3_K_S.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.Q3_K_S.gguf.split-ab) | Q3_K_S | 52.2 |  |
| [PART 1](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.IQ3_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.IQ3_M.gguf.part2of2) | IQ3_M | 53.8 |  |
| [PART 1](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.Q3_K_M.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.Q3_K_M.gguf.split-ab) | Q3_K_M | 58.2 | lower quality |
| [PART 1](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.Q3_K_L.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.Q3_K_L.gguf.split-ab) | Q3_K_L | 63.4 |  |
| [PART 1](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.IQ4_XS.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.IQ4_XS.gguf.part2of2) | IQ4_XS | 64.9 |  |
| [PART 1](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.Q4_K_S.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.Q4_K_S.gguf.split-ab) | Q4_K_S | 68.7 | fast, recommended |
| [PART 1](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.IQ4_NL.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.IQ4_NL.gguf.split-ab) | IQ4_NL | 68.8 | prefer IQ4_XS |
| [PART 1](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.Q4_K_M.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.Q4_K_M.gguf.split-ab) | Q4_K_M | 72.6 | fast, recommended |
| [PART 1](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.Q5_K_S.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.Q5_K_S.gguf.split-ab) | Q5_K_S | 83.2 |  |
| [PART 1](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.Q5_K_M.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.Q5_K_M.gguf.split-ab) | Q5_K_M | 85.4 |  |
| [PART 1](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.Q6_K.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.Q6_K.gguf.split-ab) [PART 3](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.Q6_K.gguf.split-ac) | Q6_K | 99.1 | very good quality |
| [PART 1](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.Q8_0.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.Q8_0.gguf.split-ab) [PART 3](https://huggingface.co/mradermacher/miquliz-120b-v2.0-GGUF/resolve/main/miquliz-120b-v2.0.Q8_0.gguf.split-ac) | Q8_0 | 128.2 | fast, best quality |

Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

## FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.

## Thanks

I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.

<!-- end -->