--- library_name: transformers license: other base_model: Qwen/Qwen2.5-Coder-3B-Instruct tags: - axolotl - generated_from_trainer datasets: - mhhmm/typescript-instruct-20k model-index: - name: Qwen2.5-Coder-3B-Instruct-TS results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml # axolotl_config.yaml # Model configuration base_model: Qwen/Qwen2.5-Coder-3B-Instruct hub_model_id: mrcuddle/Qwen2.5-Coder-3B-Instruct-TS # Training parameters learning_rate: 0.0001 # Adjusted for potential stability improvement train_batch_size: 4 # Increased for better gradient estimates eval_batch_size: 4 # Increased for better evaluation stability num_epochs: 1 lr_scheduler_type: cosine lr_scheduler_warmup_steps: 10 gradient_accumulation_steps: 2 micro_batch_size: 1 # Distributed training settings distributed_type: GPU num_devices: 2 # Adjusted to utilize multiple GPUs if available total_train_batch_size: 8 # Adjusted to match train_batch_size * num_devices * gradient_accumulation_steps total_eval_batch_size: 8 # Adjusted to match eval_batch_size * num_devices * gradient_accumulation_steps # Random seed for reproducibility seed: 42 datasets: - path: mhhmm/typescript-instruct-20k type: alpaca field_instruction: instruction field_output: output format: "[INST] {instruction} [/INST]\n{output}" no_input_format: "[INST] {instruction} [/INST]" roles: input: ["USER"] output: ["ASSISTANT"] ```

# Qwen2.5-Coder-3B-Instruct-TS This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct) on the mhhmm/typescript-instruct-20k dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0