--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-finetuned-turk-text-simplification results: [] --- # t5-small-finetuned-turk-text-simplification This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1001 - Rouge2 Precision: 0.6825 - Rouge2 Recall: 0.4542 - Rouge2 Fmeasure: 0.5221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.4318 | 1.0 | 500 | 0.1053 | 0.682 | 0.4533 | 0.5214 | | 0.0977 | 2.0 | 1000 | 0.1019 | 0.683 | 0.4545 | 0.5225 | | 0.0938 | 3.0 | 1500 | 0.1010 | 0.6828 | 0.4547 | 0.5226 | | 0.0916 | 4.0 | 2000 | 0.1003 | 0.6829 | 0.4545 | 0.5225 | | 0.0906 | 5.0 | 2500 | 0.1001 | 0.6825 | 0.4542 | 0.5221 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1