--- license: apache-2.0 tags: - generated_from_trainer datasets: - wl metrics: - precision - recall - f1 - accuracy model-index: - name: spanish-clinical-ner results: - task: name: Token Classification type: token-classification dataset: name: wl type: wl config: WL split: train args: WL metrics: - name: Precision type: precision value: 0.6868542362104594 - name: Recall type: recall value: 0.7348639455782313 - name: F1 type: f1 value: 0.7100484758853013 - name: Accuracy type: accuracy value: 0.8262735659847573 --- # spanish-clinical-ner This model is a fine-tuned version of [plncmm/roberta-clinical-wl-es](https://huggingface.co/plncmm/roberta-clinical-wl-es) on the wl dataset. It achieves the following results on the evaluation set: - Loss: 0.6181 - Precision: 0.6869 - Recall: 0.7349 - F1: 0.7100 - Accuracy: 0.8263 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.0283 | 1.0 | 500 | 0.6862 | 0.6690 | 0.6959 | 0.6822 | 0.8091 | | 0.599 | 2.0 | 1000 | 0.6198 | 0.6856 | 0.7276 | 0.7059 | 0.8252 | | 0.4973 | 3.0 | 1500 | 0.6181 | 0.6869 | 0.7349 | 0.7100 | 0.8263 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2