Bảo Mai Chí commited on
Commit
2dca1c7
·
verified ·
1 Parent(s): 8445f2a

Add SetFit model

Browse files
1_Pooling/config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "word_embedding_dimension": 384,
3
  "pooling_mode_cls_token": false,
4
  "pooling_mode_mean_tokens": true,
5
  "pooling_mode_max_tokens": false,
 
1
  {
2
+ "word_embedding_dimension": 768,
3
  "pooling_mode_cls_token": false,
4
  "pooling_mode_mean_tokens": true,
5
  "pooling_mode_max_tokens": false,
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 768, "out_features": 512, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
2_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:075d536dea66f90ccb766d9d3ed550f94b9331872d9e564a8cd65159ff61ddbf
3
+ size 1575072
README.md CHANGED
@@ -5,10 +5,14 @@ tags:
5
  - sentence-transformers
6
  - text-classification
7
  - generated_from_setfit_trainer
8
- base_model: sentence-transformers/all-MiniLM-L6-v2
9
  metrics:
10
  - accuracy
11
  widget:
 
 
 
 
12
  - text: 'Which of the following is a Code-Based Test Coverage Metrics(E. F. Miller,
13
  1977 dissertation)?
14
 
@@ -33,14 +37,11 @@ widget:
33
  d.
34
 
35
  C2: C0 coverage + loop coverage'
36
- - text: Phần mềm kiểm thử là gì?
37
- - text: Giải thích sự khác biệt giữa kiểm thử hộp đen và kiểm thử hộp trắng. Cung
38
- cấp ví dụ cho từng loại. (ít nhất 150 từ)
39
- - text: Thủ đô của nước Pháp là gì?
40
  pipeline_tag: text-classification
41
  inference: true
42
  model-index:
43
- - name: SetFit with sentence-transformers/all-MiniLM-L6-v2
44
  results:
45
  - task:
46
  type: text-classification
@@ -55,9 +56,9 @@ model-index:
55
  name: Accuracy
56
  ---
57
 
58
- # SetFit with sentence-transformers/all-MiniLM-L6-v2
59
 
60
- This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
61
 
62
  The model has been trained using an efficient few-shot learning technique that involves:
63
 
@@ -68,9 +69,9 @@ The model has been trained using an efficient few-shot learning technique that i
68
 
69
  ### Model Description
70
  - **Model Type:** SetFit
71
- - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
72
  - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
73
- - **Maximum Sequence Length:** 256 tokens
74
  - **Number of Classes:** 2 classes
75
  <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
76
  <!-- - **Language:** Unknown -->
@@ -83,10 +84,10 @@ The model has been trained using an efficient few-shot learning technique that i
83
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
84
 
85
  ### Model Labels
86
- | Label | Examples |
87
- |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
88
- | 1 | <ul><li>'Giải thích sự khác biệt giữa mô hình học có giám sát và không giám sát. Cung cấp ví dụ cho từng loại. (ít nhất 150 từ)'</li><li>'Analyze the time complexity of the merge sort algorithm.'</li><li>'Xác suất để trúng giải thưởng khi bạn mua một tờ vé số là 0.05%. Giả sử mỗi ngày bạn mua 1 tờ vé số, vậy\nchúng ta cần bao nhiêu ngày (trung bình) để có 98% cơ hội trúng?'</li></ul> |
89
- | 0 | <ul><li>'Nêu ngắn gọn về quá trình quang hợp.'</li><li>'Viết một hàm Python tính giai thừa của một số.'</li><li>'Briefly describe the concept of photosynthesis.'</li></ul> |
90
 
91
  ## Evaluation
92
 
@@ -113,7 +114,7 @@ from setfit import SetFitModel
113
  # Download from the 🤗 Hub
114
  model = SetFitModel.from_pretrained("chibao24/model_routing_few_shot")
115
  # Run inference
116
- preds = model("Phần mềm kiểm thử là gì?")
117
  ```
118
 
119
  <!--
@@ -145,12 +146,12 @@ preds = model("Phần mềm kiểm thử là gì?")
145
  ### Training Set Metrics
146
  | Training set | Min | Median | Max |
147
  |:-------------|:----|:--------|:----|
148
- | Word count | 4 | 24.7619 | 115 |
149
 
150
  | Label | Training Sample Count |
151
  |:------|:----------------------|
152
- | 0 | 10 |
153
- | 1 | 11 |
154
 
155
  ### Training Hyperparameters
156
  - batch_size: (4, 4)
@@ -172,15 +173,21 @@ preds = model("Phần mềm kiểm thử là gì?")
172
  ### Training Results
173
  | Epoch | Step | Training Loss | Validation Loss |
174
  |:-------:|:-------:|:-------------:|:---------------:|
175
- | 0.0164 | 1 | 0.1956 | - |
176
- | 0.8197 | 50 | 0.1926 | - |
177
- | 1.0 | 61 | - | 0.1463 |
178
- | 1.6393 | 100 | 0.0228 | - |
179
- | **2.0** | **122** | **-** | **0.0374** |
180
- | 2.4590 | 150 | 0.017 | - |
181
- | 3.0 | 183 | - | 0.0507 |
182
- | 3.2787 | 200 | 0.003 | - |
183
- | 4.0 | 244 | - | 0.0443 |
 
 
 
 
 
 
184
 
185
  * The bold row denotes the saved checkpoint.
186
  ### Framework Versions
 
5
  - sentence-transformers
6
  - text-classification
7
  - generated_from_setfit_trainer
8
+ base_model: sentence-transformers/distiluse-base-multilingual-cased-v2
9
  metrics:
10
  - accuracy
11
  widget:
12
+ - text: explain in detail what is FFT and the complexity of it
13
+ - text: The p success of karger min cut after k steps
14
+ - text: Giải thích sự khác biệt giữa mô hình học có giám sát và không giám sát. Cung
15
+ cấp ví dụ cho từng loại. (ít nhất 150 từ)
16
  - text: 'Which of the following is a Code-Based Test Coverage Metrics(E. F. Miller,
17
  1977 dissertation)?
18
 
 
37
  d.
38
 
39
  C2: C0 coverage + loop coverage'
40
+ - text: What is software testing?
 
 
 
41
  pipeline_tag: text-classification
42
  inference: true
43
  model-index:
44
+ - name: SetFit with sentence-transformers/distiluse-base-multilingual-cased-v2
45
  results:
46
  - task:
47
  type: text-classification
 
56
  name: Accuracy
57
  ---
58
 
59
+ # SetFit with sentence-transformers/distiluse-base-multilingual-cased-v2
60
 
61
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/distiluse-base-multilingual-cased-v2](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
62
 
63
  The model has been trained using an efficient few-shot learning technique that involves:
64
 
 
69
 
70
  ### Model Description
71
  - **Model Type:** SetFit
72
+ - **Sentence Transformer body:** [sentence-transformers/distiluse-base-multilingual-cased-v2](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2)
73
  - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
74
+ - **Maximum Sequence Length:** 128 tokens
75
  - **Number of Classes:** 2 classes
76
  <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
77
  <!-- - **Language:** Unknown -->
 
84
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
85
 
86
  ### Model Labels
87
+ | Label | Examples |
88
+ |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
89
+ | 0 | <ul><li>'What is the capital of France?'</li><li>'Nêu ngắn gọn về quá trình quang hợp.'</li><li>'Briefly describe the concept of photosynthesis.'</li></ul> |
90
+ | 1 | <ul><li>'What is White-box testing?\nCâu hỏi 7Trả lời\n\na.\nAll of the other answers.\n\nb.\nA testing technique in which internal structure, design and coding of software are tested.\n\nc.\nIts foundation is to execute every part of the code at least once.\n\nd.\nIn this technique, code is visible to testers.'</li><li>'For the expression "(a AND (b OR c))", which of the following test-cases is Multiple Condition Coverage (MCC)?'</li><li>'The p success of karger min cut after k steps. Tell me the detail of the equation'</li></ul> |
91
 
92
  ## Evaluation
93
 
 
114
  # Download from the 🤗 Hub
115
  model = SetFitModel.from_pretrained("chibao24/model_routing_few_shot")
116
  # Run inference
117
+ preds = model("What is software testing?")
118
  ```
119
 
120
  <!--
 
146
  ### Training Set Metrics
147
  | Training set | Min | Median | Max |
148
  |:-------------|:----|:--------|:----|
149
+ | Word count | 3 | 20.2903 | 115 |
150
 
151
  | Label | Training Sample Count |
152
  |:------|:----------------------|
153
+ | 0 | 16 |
154
+ | 1 | 15 |
155
 
156
  ### Training Hyperparameters
157
  - batch_size: (4, 4)
 
173
  ### Training Results
174
  | Epoch | Step | Training Loss | Validation Loss |
175
  |:-------:|:-------:|:-------------:|:---------------:|
176
+ | 0.0078 | 1 | 0.4319 | - |
177
+ | 0.3906 | 50 | 0.1028 | - |
178
+ | 0.7812 | 100 | 0.0021 | - |
179
+ | **1.0** | **128** | **-** | **0.2328** |
180
+ | 1.1719 | 150 | 0.0002 | - |
181
+ | 1.5625 | 200 | 0.0 | - |
182
+ | 1.9531 | 250 | 0.0001 | - |
183
+ | 2.0 | 256 | - | 0.3315 |
184
+ | 2.3438 | 300 | 0.0 | - |
185
+ | 2.7344 | 350 | 0.0002 | - |
186
+ | 3.0 | 384 | - | 0.2364 |
187
+ | 3.125 | 400 | 0.0001 | - |
188
+ | 3.5156 | 450 | 0.0 | - |
189
+ | 3.9062 | 500 | 0.0001 | - |
190
+ | 4.0 | 512 | - | 0.3333 |
191
 
192
  * The bold row denotes the saved checkpoint.
193
  ### Framework Versions
config.json CHANGED
@@ -1,26 +1,26 @@
1
  {
2
- "_name_or_path": "checkpoints/step_122",
 
3
  "architectures": [
4
- "BertModel"
5
  ],
6
- "attention_probs_dropout_prob": 0.1,
7
- "classifier_dropout": null,
8
- "gradient_checkpointing": false,
9
- "hidden_act": "gelu",
10
- "hidden_dropout_prob": 0.1,
11
- "hidden_size": 384,
12
  "initializer_range": 0.02,
13
- "intermediate_size": 1536,
14
- "layer_norm_eps": 1e-12,
15
  "max_position_embeddings": 512,
16
- "model_type": "bert",
17
- "num_attention_heads": 12,
18
- "num_hidden_layers": 6,
 
 
19
  "pad_token_id": 0,
20
- "position_embedding_type": "absolute",
 
 
 
21
  "torch_dtype": "float32",
22
  "transformers_version": "4.41.2",
23
- "type_vocab_size": 2,
24
- "use_cache": true,
25
- "vocab_size": 30522
26
  }
 
1
  {
2
+ "_name_or_path": "checkpoints/step_128",
3
+ "activation": "gelu",
4
  "architectures": [
5
+ "DistilBertModel"
6
  ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
 
 
11
  "initializer_range": 0.02,
 
 
12
  "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "output_hidden_states": true,
17
+ "output_past": true,
18
  "pad_token_id": 0,
19
+ "qa_dropout": 0.1,
20
+ "seq_classif_dropout": 0.2,
21
+ "sinusoidal_pos_embds": false,
22
+ "tie_weights_": true,
23
  "torch_dtype": "float32",
24
  "transformers_version": "4.41.2",
25
+ "vocab_size": 119547
 
 
26
  }
config_setfit.json CHANGED
@@ -1,7 +1,7 @@
1
  {
 
2
  "labels": [
3
  0,
4
  1
5
- ],
6
- "normalize_embeddings": false
7
  }
 
1
  {
2
+ "normalize_embeddings": false,
3
  "labels": [
4
  0,
5
  1
6
+ ]
 
7
  }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2d69287a4f05099e3df3bcaec8f2156239fae83be7bb0c746d805ed7d0badafe
3
- size 90864192
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:699c83648fa8570f6733bd6022605955a6fd5cb9f189f6b21d7e076466ea8357
3
+ size 538947416
model_head.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a0a75388482e120e36096e869ba84a8cfc7f08ec8bc417ed76de308380402661
3
- size 3935
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:846cbc06ae8101739d4132eefe3efa2ad30a334c426d9ba19156743aefac24c8
3
+ size 4959
modules.json CHANGED
@@ -14,7 +14,7 @@
14
  {
15
  "idx": 2,
16
  "name": "2",
17
- "path": "2_Normalize",
18
- "type": "sentence_transformers.models.Normalize"
19
  }
20
  ]
 
14
  {
15
  "idx": 2,
16
  "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
  }
20
  ]
sentence_bert_config.json CHANGED
@@ -1,4 +1,4 @@
1
  {
2
- "max_seq_length": 256,
3
  "do_lower_case": false
4
  }
 
1
  {
2
+ "max_seq_length": 128,
3
  "do_lower_case": false
4
  }
tokenizer.json CHANGED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json CHANGED
@@ -44,10 +44,12 @@
44
  "clean_up_tokenization_spaces": true,
45
  "cls_token": "[CLS]",
46
  "do_basic_tokenize": true,
47
- "do_lower_case": true,
 
48
  "mask_token": "[MASK]",
 
49
  "max_length": 128,
50
- "model_max_length": 256,
51
  "never_split": null,
52
  "pad_to_multiple_of": null,
53
  "pad_token": "[PAD]",
@@ -57,7 +59,7 @@
57
  "stride": 0,
58
  "strip_accents": null,
59
  "tokenize_chinese_chars": true,
60
- "tokenizer_class": "BertTokenizer",
61
  "truncation_side": "right",
62
  "truncation_strategy": "longest_first",
63
  "unk_token": "[UNK]"
 
44
  "clean_up_tokenization_spaces": true,
45
  "cls_token": "[CLS]",
46
  "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "full_tokenizer_file": null,
49
  "mask_token": "[MASK]",
50
+ "max_len": 512,
51
  "max_length": 128,
52
+ "model_max_length": 128,
53
  "never_split": null,
54
  "pad_to_multiple_of": null,
55
  "pad_token": "[PAD]",
 
59
  "stride": 0,
60
  "strip_accents": null,
61
  "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "DistilBertTokenizer",
63
  "truncation_side": "right",
64
  "truncation_strategy": "longest_first",
65
  "unk_token": "[UNK]"
vocab.txt CHANGED
The diff for this file is too large to render. See raw diff