--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.0 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 5.7174 - Accuracy: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 5.6861 | 1.0 | 61 | 5.7174 | 0.0 | | 5.573 | 2.0 | 122 | 5.7429 | 0.0 | | 5.4992 | 3.0 | 183 | 5.7735 | 0.0 | | 5.3129 | 4.0 | 244 | 5.7965 | 0.0 | | 5.3243 | 5.0 | 305 | 5.8150 | 0.0 | | 5.2456 | 6.0 | 366 | 5.7999 | 0.0 | | 4.8339 | 7.0 | 427 | 5.8090 | 0.0 | | 5.0512 | 8.0 | 488 | 5.8288 | 0.0 | | 4.7789 | 9.0 | 549 | 5.8143 | 0.0 | | 5.1463 | 10.0 | 610 | 5.8238 | 0.0 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0