--- license: apache-2.0 language: - en base_model: - timm/ViT-SO400M-14-SigLIP-384 library_name: open_clip tags: - genshin-impact - game - clip - siglip - hoyoverse --- # GenshinCLIP A simple open-sourced [SigLIP model](https://huggingface.co/timm/ViT-SO400M-14-SigLIP-384) further fine-tuned on 15k Genshin Impact (Game Version 5.0) English text-image pairs at resolution 384x384. Visit the [github](https://github.com/mrzjy/GenshinCLIP) for case study and data pair examples. The model is **far from being perfect**, but could still offer some better text-image matching performance in some Genshin Impact scenarios. - Deprecated Models (Trained on Genshin Impact Version 4.x) | Model | Checkpoint Size | Val Loss | |:-------------------------------------------------------------------------------------------:|:-----------------:|:----------:| | [GenshinImpact-CLIP-ViT-B-16-laion2B-s34B-b88K](https://huggingface.co/mrzjy/GenshinImpact-CLIP-ViT-B-16-laion2B-s34B-b88K) | 0.59 GB | 1.152 | | [GenshinImpact-ViT-SO400M-14-SigLIP-384](https://huggingface.co/mrzjy/GenshinImpact-ViT-SO400M-14-SigLIP-384) | 3.51 GB | 0.362 | ## Intended uses & limitations You can use the raw model for tasks like zero-shot image classification and image-text retrieval. ### How to use (With OpenCLIP) Here is how to use this model to perform zero-shot image classification: ```python import torch import torch.nn.functional as F from PIL import Image import requests from open_clip import create_model_from_pretrained, get_tokenizer def preprocess_text(string): return "Genshin Impact\n" + string device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # load checkpoint from local path # model_path = "path/to/open_clip_pytorch_model.bin" # model_name = "ViT-SO400M-14-SigLIP-384" # model, preprocess = create_model_from_pretrained(model_name=model_name, pretrained=model_path, device=device) # tokenizer = get_tokenizer(model_name) # or load from hub model, preprocess = create_model_from_pretrained('hf-hub:mrzjy/GenshinImpact-5.0-ViT-SO400M-14-SigLIP-384') tokenizer = get_tokenizer('hf-hub:mrzjy/GenshinImpact-5.0-ViT-SO400M-14-SigLIP-384') # image image_url = "https://static.wikia.nocookie.net/gensin-impact/images/3/33/Qingce_Village.png" image = Image.open(requests.get(image_url, stream=True).raw) image = preprocess(image).unsqueeze(0).to(device) # text choices labels = [ "This is an area of Liyue", "This is an area of Mondstadt", "This is an area of Sumeru", "This is Qingce Village" ] labels = [preprocess_text(l) for l in labels] text = tokenizer(labels, context_length=model.context_length).to(device) with torch.autocast(device_type=device.type): with torch.no_grad(): image_features = model.encode_image(image) text_features = model.encode_text(text) image_features = F.normalize(image_features, dim=-1) image_features = F.normalize(image_features, dim=-1) text_features = F.normalize(text_features, dim=-1) text_probs = torch.sigmoid(image_features @ text_features.T * model.logit_scale.exp() + model.logit_bias) scores = [f"{s:.3f}" for i, s in enumerate(text_probs.tolist()[0])] print(scores) ``` ## Model Card ### SigLIP for GenshinImpact [SigLIP model](https://huggingface.co/timm/ViT-SO400M-14-SigLIP-384) further fine-tuned on 15k Genshin Impact English text-image pairs at resolution 384x384. (Note: A slight error occurred in counting training samples for deprecated models. The latest training data should actually include 3,500 additional samples compared to previous counts.) ### Training data description There're currently 14,573 (train) and 298 (validation) text-image pairs used for model training. All the images and texts are crawled from [Genshin Fandom Wiki](https://genshin-impact.fandom.com/wiki) and are manually parsed to form text-image pairs. **Image Processing:** - Size: Resize all images to 384x384 pixels to match the original model training settings. - Format: Accept images in PNG or GIF format. For GIFs, extract a random frame to create a static image for text-image pairs. **Text Processing:** - Source: Text can be from the simple caption attribute of an HTML `` tag or specified web content. - Format: Prepend all texts with "Genshin Impact" along with some simple template to form natural language sentences. **Data Distribution:** ![data_distribution.png](img%2Fdata_distribution.png)