mschiesser
commited on
Commit
·
29ec101
1
Parent(s):
e2a7bd3
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- wikiann
|
7 |
+
model-index:
|
8 |
+
- name: ner-bert-german
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# ner-bert-german
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the wikiann dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.2450
|
20 |
+
- Overall Precision: 0.8767
|
21 |
+
- Overall Recall: 0.8893
|
22 |
+
- Overall F1: 0.8829
|
23 |
+
- Overall Accuracy: 0.9606
|
24 |
+
- Loc F1: 0.9067
|
25 |
+
- Org F1: 0.8278
|
26 |
+
- Per F1: 0.9152
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 16
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 7
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Loc F1 | Org F1 | Per F1 |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:------:|:------:|:------:|
|
57 |
+
| 0.252 | 0.8 | 1000 | 0.1724 | 0.8422 | 0.8368 | 0.8395 | 0.9501 | 0.8702 | 0.7593 | 0.8921 |
|
58 |
+
| 0.1376 | 1.6 | 2000 | 0.1679 | 0.8388 | 0.8607 | 0.8497 | 0.9528 | 0.8814 | 0.7712 | 0.8971 |
|
59 |
+
| 0.0982 | 2.4 | 3000 | 0.1880 | 0.8631 | 0.8598 | 0.8614 | 0.9564 | 0.8847 | 0.7915 | 0.9070 |
|
60 |
+
| 0.0681 | 3.2 | 4000 | 0.1956 | 0.8599 | 0.8775 | 0.8686 | 0.9574 | 0.8905 | 0.8084 | 0.9097 |
|
61 |
+
| 0.0477 | 4.0 | 5000 | 0.2115 | 0.8738 | 0.8814 | 0.8776 | 0.9593 | 0.9003 | 0.8207 | 0.9144 |
|
62 |
+
| 0.031 | 4.8 | 6000 | 0.2274 | 0.8751 | 0.8826 | 0.8788 | 0.9598 | 0.9017 | 0.8246 | 0.9115 |
|
63 |
+
| 0.0229 | 5.6 | 7000 | 0.2317 | 0.8715 | 0.8888 | 0.8801 | 0.9598 | 0.9061 | 0.8208 | 0.9145 |
|
64 |
+
| 0.0181 | 6.4 | 8000 | 0.2450 | 0.8767 | 0.8893 | 0.8829 | 0.9606 | 0.9067 | 0.8278 | 0.9152 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.25.1
|
70 |
+
- Pytorch 1.13.1
|
71 |
+
- Datasets 2.8.0
|
72 |
+
- Tokenizers 0.13.2
|