--- license: apache-2.0 language: de tags: - generated_from_trainer datasets: - wikiann model-index: - name: ner-bert-german results: [] examples: null widget: - text: "Herr Schmidt lebt in Berlin und arbeitet für die UN." example_title: Schmidt aus Berlin - text: "Die Deutsche Bahn hat ihren Hauptsitz in Frankfurt." example_title: Deutsche Bahn - text: "In München gibt es viele Unternehmen, z.B. BMW und Siemens." example_title: München metrics: - seqeval --- # ner-bert-german This model can be used to do [named-entity recognition](https://en.wikipedia.org/wiki/Named-entity_recognition) in German. It is trained on a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the German wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.2450 - Overall Precision: 0.8767 - Overall Recall: 0.8893 - Overall F1: 0.8829 - Overall Accuracy: 0.9606 - Loc F1: 0.9067 - Org F1: 0.8278 - Per F1: 0.9152 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Loc F1 | Org F1 | Per F1 | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:------:|:------:|:------:| | 0.252 | 0.8 | 1000 | 0.1724 | 0.8422 | 0.8368 | 0.8395 | 0.9501 | 0.8702 | 0.7593 | 0.8921 | | 0.1376 | 1.6 | 2000 | 0.1679 | 0.8388 | 0.8607 | 0.8497 | 0.9528 | 0.8814 | 0.7712 | 0.8971 | | 0.0982 | 2.4 | 3000 | 0.1880 | 0.8631 | 0.8598 | 0.8614 | 0.9564 | 0.8847 | 0.7915 | 0.9070 | | 0.0681 | 3.2 | 4000 | 0.1956 | 0.8599 | 0.8775 | 0.8686 | 0.9574 | 0.8905 | 0.8084 | 0.9097 | | 0.0477 | 4.0 | 5000 | 0.2115 | 0.8738 | 0.8814 | 0.8776 | 0.9593 | 0.9003 | 0.8207 | 0.9144 | | 0.031 | 4.8 | 6000 | 0.2274 | 0.8751 | 0.8826 | 0.8788 | 0.9598 | 0.9017 | 0.8246 | 0.9115 | | 0.0229 | 5.6 | 7000 | 0.2317 | 0.8715 | 0.8888 | 0.8801 | 0.9598 | 0.9061 | 0.8208 | 0.9145 | | 0.0181 | 6.4 | 8000 | 0.2450 | 0.8767 | 0.8893 | 0.8829 | 0.9606 | 0.9067 | 0.8278 | 0.9152 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1 - Datasets 2.8.0 - Tokenizers 0.13.2