|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Feature extractor class for Music Audio Efficient Spectrogram Transformer. |
|
""" |
|
|
|
|
|
from typing import List, Optional, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from transformers.audio_utils import mel_filter_bank, spectrogram, window_function |
|
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor |
|
from transformers.feature_extraction_utils import BatchFeature |
|
from transformers.utils import TensorType, logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class MAESTFeatureExtractor(SequenceFeatureExtractor): |
|
r""" |
|
Constructs a Music Audio Efficient Spectrogram Transformer (MAEST) feature extractor. |
|
|
|
This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains |
|
most of the main methods. Users should refer to this superclass for more information regarding those methods. |
|
|
|
This class extracts mel-filter bank features from raw audio, pads/truncates them to a fixed length and normalizes |
|
them using a mean and standard deviation. |
|
|
|
Args: |
|
feature_size (`int`, *optional*, defaults to 1): |
|
The feature dimension of the extracted features. |
|
sampling_rate (`int`, *optional*, defaults to 16000): |
|
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). |
|
num_mel_bins (`int`, *optional*, defaults to 96): |
|
Number of Mel-frequency bins. |
|
max_length (`int`, *optional*, defaults to 1876): |
|
Maximum length to which to pad/truncate the extracted features. Set to -1 to deactivate the functionallity. |
|
padding_value (`int`, *optional*, defaults to 0.0): |
|
The value used to pad the input waveform. |
|
do_normalize (`bool`, *optional*, defaults to `True`): |
|
Whether or not to normalize the log-Mel features using `mean` and `std`. |
|
mean (`float`, *optional*, defaults to 2.06755686098554): |
|
The mean value used to normalize the log-Mel features. Uses the Discogs20 mean by default. |
|
std (`float`, *optional*, defaults to 1.268292820667291): |
|
The standard deviation value used to normalize the log-Mel features. Uses the Discogs20 standard deviation |
|
by default. |
|
return_attention_mask (`bool`, *optional*, defaults to `False`): |
|
Whether or not [`~ASTFeatureExtractor.__call__`] should return `attention_mask`. |
|
n_fft (`int`, *optional*, defaults to 512): |
|
Length of the FFT window. |
|
hop_length (`int`, *optional*, defaults to 256): |
|
Number of samples between successive frames. |
|
log_compression (`str`, *optional*, defaults to `"logC"`): |
|
Type of log compression to apply to the mel-spectrogram. Can be one of [`None`, `log`, `logC`]. |
|
""" |
|
|
|
model_input_names = ["input_values", "attention_mask"] |
|
|
|
def __init__( |
|
self, |
|
feature_size=1, |
|
sampling_rate=16000, |
|
num_mel_bins=96, |
|
max_length=1876, |
|
padding_value=0.0, |
|
do_normalize=True, |
|
mean=2.06755686098554, |
|
std=1.268292820667291, |
|
return_attention_mask=False, |
|
n_fft=512, |
|
hop_length=256, |
|
log_compression="logC", |
|
**kwargs, |
|
): |
|
super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs) |
|
self.sampling_rate = sampling_rate |
|
self.n_fft = n_fft |
|
self.hop_length = hop_length |
|
self.log_compression = log_compression |
|
self.num_mel_bins = num_mel_bins |
|
self.max_length = max_length |
|
self.do_normalize = do_normalize |
|
self.mean = mean |
|
self.std = std |
|
self.return_attention_mask = return_attention_mask |
|
|
|
self.window = window_function( |
|
window_length=self.n_fft, |
|
name="hann", |
|
).tolist() |
|
|
|
self.mel_fb = mel_filter_bank( |
|
num_frequency_bins=self.n_fft // 2 + 1, |
|
num_mel_filters=self.num_mel_bins, |
|
min_frequency=0, |
|
max_frequency=self.sampling_rate / 2, |
|
sampling_rate=self.sampling_rate, |
|
norm="slaney", |
|
mel_scale="slaney", |
|
).tolist() |
|
|
|
def _extract_fbank_features( |
|
self, |
|
waveform: np.ndarray, |
|
max_length: int, |
|
) -> np.ndarray: |
|
""" |
|
Get mel-spectrogram features using audio_utils. |
|
""" |
|
|
|
melspec = spectrogram( |
|
waveform, |
|
window=np.array(self.window), |
|
frame_length=self.n_fft, |
|
hop_length=self.hop_length, |
|
power=2, |
|
mel_filters=np.array(self.mel_fb), |
|
min_value=1e-30, |
|
mel_floor=1e-30, |
|
pad_mode="constant", |
|
).T |
|
|
|
if not self.log_compression: |
|
pass |
|
elif self.log_compression == "log": |
|
melspec = np.log(melspec + np.finfo(float).eps) |
|
elif self.log_compression == "logC": |
|
melspec = np.log10(1 + melspec * 10000) |
|
else: |
|
raise ValueError( |
|
f"`log_compression` can only be one of [None, 'log', 'logC'], but got: {self.log_compression}" |
|
) |
|
|
|
melspec = torch.Tensor(melspec) |
|
n_frames = melspec.shape[0] |
|
|
|
if max_length > 0: |
|
difference = max_length - n_frames |
|
|
|
|
|
if difference > 0: |
|
pad_module = torch.nn.ZeroPad2d((0, 0, 0, difference)) |
|
melspec = pad_module(melspec) |
|
elif difference < 0: |
|
melspec = melspec[0:max_length, :] |
|
|
|
return melspec.numpy() |
|
|
|
def normalize(self, input_values: np.ndarray) -> np.ndarray: |
|
return (input_values - (self.mean)) / (self.std * 2) |
|
|
|
def __call__( |
|
self, |
|
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], |
|
sampling_rate: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
**kwargs, |
|
) -> BatchFeature: |
|
""" |
|
Main method to featurize and prepare for the model one or several sequence(s). |
|
|
|
Args: |
|
raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`): |
|
The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float |
|
values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not |
|
stereo, i.e. single float per timestep. |
|
sampling_rate (`int`, *optional*): |
|
The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass |
|
`sampling_rate` at the forward call to prevent silent errors. |
|
return_tensors (`str` or [`~utils.TensorType`], *optional*): |
|
If set, will return tensors instead of list of python integers. Acceptable values are: |
|
|
|
- `'tf'`: Return TensorFlow `tf.constant` objects. |
|
- `'pt'`: Return PyTorch `torch.Tensor` objects. |
|
- `'np'`: Return Numpy `np.ndarray` objects. |
|
""" |
|
|
|
if sampling_rate is not None: |
|
if sampling_rate != self.sampling_rate: |
|
raise ValueError( |
|
f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" |
|
f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" |
|
f" {self.sampling_rate} and not {sampling_rate}." |
|
) |
|
else: |
|
logger.warning( |
|
"It is strongly recommended to pass the `sampling_rate` argument to this function. " |
|
"Failing to do so can result in silent errors that might be hard to debug." |
|
) |
|
|
|
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1 |
|
if is_batched_numpy and len(raw_speech.shape) > 2: |
|
raise ValueError(f"Only mono-channel audio is supported for input to {self}") |
|
is_batched = is_batched_numpy or ( |
|
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list))) |
|
) |
|
|
|
if is_batched: |
|
raw_speech = [np.asarray(speech, dtype=np.float32) for speech in raw_speech] |
|
elif not is_batched and not isinstance(raw_speech, np.ndarray): |
|
raw_speech = np.asarray(raw_speech, dtype=np.float32) |
|
elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64): |
|
raw_speech = raw_speech.astype(np.float32) |
|
|
|
|
|
if not is_batched: |
|
raw_speech = [raw_speech] |
|
|
|
|
|
features = [self._extract_fbank_features(waveform, max_length=self.max_length) for waveform in raw_speech] |
|
|
|
|
|
padded_inputs = BatchFeature({"input_values": features}) |
|
|
|
|
|
input_values = padded_inputs.get("input_values") |
|
if isinstance(input_values[0], list): |
|
padded_inputs["input_values"] = [np.asarray(feature, dtype=np.float32) for feature in input_values] |
|
|
|
|
|
if self.do_normalize: |
|
padded_inputs["input_values"] = [self.normalize(feature) for feature in input_values] |
|
|
|
if return_tensors is not None: |
|
padded_inputs = padded_inputs.convert_to_tensors(return_tensors) |
|
|
|
return padded_inputs |
|
|