# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Feature extractor class for Music Audio Efficient Spectrogram Transformer. """ from typing import List, Optional, Union import numpy as np import torch from transformers.audio_utils import mel_filter_bank, spectrogram, window_function from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor from transformers.feature_extraction_utils import BatchFeature from transformers.utils import TensorType, logging logger = logging.get_logger(__name__) class MAESTFeatureExtractor(SequenceFeatureExtractor): r""" Constructs a Music Audio Efficient Spectrogram Transformer (MAEST) feature extractor. This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. This class extracts mel-filter bank features from raw audio, pads/truncates them to a fixed length and normalizes them using a mean and standard deviation. Args: feature_size (`int`, *optional*, defaults to 1): The feature dimension of the extracted features. sampling_rate (`int`, *optional*, defaults to 16000): The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). num_mel_bins (`int`, *optional*, defaults to 96): Number of Mel-frequency bins. max_length (`int`, *optional*, defaults to 1876): Maximum length to which to pad/truncate the extracted features. Set to -1 to deactivate the functionallity. padding_value (`int`, *optional*, defaults to 0.0): The value used to pad the input waveform. do_normalize (`bool`, *optional*, defaults to `True`): Whether or not to normalize the log-Mel features using `mean` and `std`. mean (`float`, *optional*, defaults to 2.06755686098554): The mean value used to normalize the log-Mel features. Uses the Discogs20 mean by default. std (`float`, *optional*, defaults to 1.268292820667291): The standard deviation value used to normalize the log-Mel features. Uses the Discogs20 standard deviation by default. return_attention_mask (`bool`, *optional*, defaults to `False`): Whether or not [`~ASTFeatureExtractor.__call__`] should return `attention_mask`. n_fft (`int`, *optional*, defaults to 512): Length of the FFT window. hop_length (`int`, *optional*, defaults to 256): Number of samples between successive frames. log_compression (`str`, *optional*, defaults to `"logC"`): Type of log compression to apply to the mel-spectrogram. Can be one of [`None`, `log`, `logC`]. """ model_input_names = ["input_values", "attention_mask"] def __init__( self, feature_size=1, sampling_rate=16000, num_mel_bins=96, max_length=1876, padding_value=0.0, do_normalize=True, mean=2.06755686098554, std=1.268292820667291, return_attention_mask=False, n_fft=512, hop_length=256, log_compression="logC", **kwargs, ): super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs) self.sampling_rate = sampling_rate self.n_fft = n_fft self.hop_length = hop_length self.log_compression = log_compression self.num_mel_bins = num_mel_bins self.max_length = max_length self.do_normalize = do_normalize self.mean = mean self.std = std self.return_attention_mask = return_attention_mask self.window = window_function( window_length=self.n_fft, name="hann", ).tolist() self.mel_fb = mel_filter_bank( num_frequency_bins=self.n_fft // 2 + 1, num_mel_filters=self.num_mel_bins, min_frequency=0, max_frequency=self.sampling_rate / 2, sampling_rate=self.sampling_rate, norm="slaney", mel_scale="slaney", ).tolist() def _extract_fbank_features( self, waveform: np.ndarray, max_length: int, ) -> np.ndarray: """ Get mel-spectrogram features using audio_utils. """ melspec = spectrogram( waveform, window=np.array(self.window), frame_length=self.n_fft, hop_length=self.hop_length, power=2, mel_filters=np.array(self.mel_fb), min_value=1e-30, mel_floor=1e-30, pad_mode="constant", ).T if not self.log_compression: pass elif self.log_compression == "log": melspec = np.log(melspec + np.finfo(float).eps) elif self.log_compression == "logC": melspec = np.log10(1 + melspec * 10000) else: raise ValueError( f"`log_compression` can only be one of [None, 'log', 'logC'], but got: {self.log_compression}" ) melspec = torch.Tensor(melspec) n_frames = melspec.shape[0] if max_length > 0: difference = max_length - n_frames # pad or truncate, depending on difference if difference > 0: pad_module = torch.nn.ZeroPad2d((0, 0, 0, difference)) melspec = pad_module(melspec) elif difference < 0: melspec = melspec[0:max_length, :] return melspec.numpy() def normalize(self, input_values: np.ndarray) -> np.ndarray: return (input_values - (self.mean)) / (self.std * 2) def __call__( self, raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], sampling_rate: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> BatchFeature: """ Main method to featurize and prepare for the model one or several sequence(s). Args: raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`): The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not stereo, i.e. single float per timestep. sampling_rate (`int`, *optional*): The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass `sampling_rate` at the forward call to prevent silent errors. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. """ if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") is_batched = is_batched_numpy or ( isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list))) ) if is_batched: raw_speech = [np.asarray(speech, dtype=np.float32) for speech in raw_speech] elif not is_batched and not isinstance(raw_speech, np.ndarray): raw_speech = np.asarray(raw_speech, dtype=np.float32) elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64): raw_speech = raw_speech.astype(np.float32) # always return batch if not is_batched: raw_speech = [raw_speech] # extract fbank features and pad/truncate to max_length features = [self._extract_fbank_features(waveform, max_length=self.max_length) for waveform in raw_speech] # convert into BatchFeature padded_inputs = BatchFeature({"input_values": features}) # make sure list is in array format input_values = padded_inputs.get("input_values") if isinstance(input_values[0], list): padded_inputs["input_values"] = [np.asarray(feature, dtype=np.float32) for feature in input_values] # normalization if self.do_normalize: padded_inputs["input_values"] = [self.normalize(feature) for feature in input_values] if return_tensors is not None: padded_inputs = padded_inputs.convert_to_tensors(return_tensors) return padded_inputs