--- library_name: transformers base_model: TinyPixel/small-llama2 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: debug_full_test results: [] --- # debug_full_test This model is a fine-tuned version of [TinyPixel/small-llama2](https://huggingface.co/TinyPixel/small-llama2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2665 - Accuracy: 0.6300 - Precision: 0.375 - Recall: 0.0299 - F1: 0.0553 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.6327 | 1.0 | 5 | 1.2665 | 0.6300 | 0.375 | 0.0299 | 0.0553 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3