PEFT
Safetensors
llama
Generated from Trainer
muellerzr HF staff commited on
Commit
6e7cb94
·
verified ·
1 Parent(s): 68a6216

Update axolotl_config.yml

Browse files
Files changed (1) hide show
  1. axolotl_config.yml +1 -106
axolotl_config.yml CHANGED
@@ -1,21 +1,3 @@
1
- ---
2
- library_name: peft
3
- tags:
4
- - generated_from_trainer
5
- base_model: llama3-8B
6
- model-index:
7
- - name: qlora_decrease_lr_promptfix
8
- results: []
9
- ---
10
-
11
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
- should probably proofread and complete it, then remove this comment. -->
13
-
14
- [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
15
- <details><summary>See axolotl config</summary>
16
-
17
- axolotl version: `0.4.0`
18
- ```yaml
19
  base_model: llama3-8B
20
  model_type: LlamaForCausalLM
21
  tokenizer_type: AutoTokenizer
@@ -112,91 +94,4 @@ tokens:
112
  - "<|im_end|>"
113
  lora_modules_to_save:
114
  - embed_tokens
115
- - lm_head
116
- ```
117
-
118
- </details><br>
119
-
120
- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/muellerzr/llama-3-8b-self-align-axolotl/runs/2q8jhm3e)
121
- # qlora_decrease_lr_promptfix
122
-
123
- This model was trained from scratch on the None dataset.
124
- It achieves the following results on the evaluation set:
125
- - Loss: 0.4121
126
-
127
- ## Model description
128
-
129
- More information needed
130
-
131
- ## Intended uses & limitations
132
-
133
- More information needed
134
-
135
- ## Training and evaluation data
136
-
137
- More information needed
138
-
139
- ## Training procedure
140
-
141
- ### Training hyperparameters
142
-
143
- The following hyperparameters were used during training:
144
- - learning_rate: 2e-05
145
- - train_batch_size: 2
146
- - eval_batch_size: 2
147
- - seed: 42
148
- - distributed_type: multi-GPU
149
- - num_devices: 2
150
- - gradient_accumulation_steps: 8
151
- - total_train_batch_size: 32
152
- - total_eval_batch_size: 4
153
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
154
- - lr_scheduler_type: cosine
155
- - lr_scheduler_warmup_steps: 100
156
- - num_epochs: 4
157
-
158
- ### Training results
159
-
160
- | Training Loss | Epoch | Step | Validation Loss |
161
- |:-------------:|:------:|:----:|:---------------:|
162
- | 0.6903 | 0.0061 | 1 | 0.6706 |
163
- | 0.6463 | 0.1285 | 21 | 0.6392 |
164
- | 0.4944 | 0.2571 | 42 | 0.4806 |
165
- | 0.4495 | 0.3856 | 63 | 0.4532 |
166
- | 0.4444 | 0.5142 | 84 | 0.4406 |
167
- | 0.4185 | 0.6427 | 105 | 0.4334 |
168
- | 0.4336 | 0.7712 | 126 | 0.4286 |
169
- | 0.4061 | 0.8998 | 147 | 0.4252 |
170
- | 0.4002 | 1.0145 | 168 | 0.4221 |
171
- | 0.4013 | 1.1431 | 189 | 0.4205 |
172
- | 0.3674 | 1.2716 | 210 | 0.4189 |
173
- | 0.3942 | 1.4002 | 231 | 0.4175 |
174
- | 0.3984 | 1.5287 | 252 | 0.4165 |
175
- | 0.3867 | 1.6572 | 273 | 0.4150 |
176
- | 0.3872 | 1.7858 | 294 | 0.4137 |
177
- | 0.401 | 1.9143 | 315 | 0.4130 |
178
- | 0.3602 | 2.0275 | 336 | 0.4126 |
179
- | 0.3817 | 2.1561 | 357 | 0.4131 |
180
- | 0.3592 | 2.2846 | 378 | 0.4129 |
181
- | 0.3729 | 2.4132 | 399 | 0.4127 |
182
- | 0.372 | 2.5417 | 420 | 0.4121 |
183
- | 0.3685 | 2.6702 | 441 | 0.4120 |
184
- | 0.3732 | 2.7988 | 462 | 0.4115 |
185
- | 0.38 | 2.9273 | 483 | 0.4112 |
186
- | 0.3637 | 3.0413 | 504 | 0.4114 |
187
- | 0.3628 | 3.1699 | 525 | 0.4118 |
188
- | 0.355 | 3.2984 | 546 | 0.4122 |
189
- | 0.3646 | 3.4269 | 567 | 0.4121 |
190
- | 0.3496 | 3.5555 | 588 | 0.4121 |
191
- | 0.3573 | 3.6840 | 609 | 0.4121 |
192
- | 0.3598 | 3.8125 | 630 | 0.4121 |
193
- | 0.3669 | 3.9411 | 651 | 0.4121 |
194
-
195
-
196
- ### Framework versions
197
-
198
- - PEFT 0.11.1
199
- - Transformers 4.42.0.dev0
200
- - Pytorch 2.3.0+cu118
201
- - Datasets 2.19.1
202
- - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  base_model: llama3-8B
2
  model_type: LlamaForCausalLM
3
  tokenizer_type: AutoTokenizer
 
94
  - "<|im_end|>"
95
  lora_modules_to_save:
96
  - embed_tokens
97
+ - lm_head