--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: fine-tuned-DatasetQAS-TYDI-QA-ID-with-indobert-base-uncased-with-ITTL-without-freeze-LR-1e-05 results: [] --- # fine-tuned-DatasetQAS-TYDI-QA-ID-with-indobert-base-uncased-with-ITTL-without-freeze-LR-1e-05 This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3123 - Exact Match: 55.7319 - F1: 68.7642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match | F1 | |:-------------:|:-----:|:----:|:---------------:|:-----------:|:-------:| | 6.3583 | 0.5 | 19 | 4.0413 | 7.7601 | 19.0346 | | 6.3583 | 1.0 | 38 | 2.8990 | 13.4039 | 26.3293 | | 4.0604 | 1.5 | 57 | 2.5086 | 21.3404 | 33.1133 | | 4.0604 | 2.0 | 76 | 2.3326 | 24.6914 | 37.3153 | | 4.0604 | 2.5 | 95 | 2.2257 | 27.3369 | 38.8270 | | 2.4855 | 3.0 | 114 | 2.1022 | 31.9224 | 43.8833 | | 2.4855 | 3.5 | 133 | 2.0109 | 33.1570 | 45.0028 | | 2.1528 | 4.0 | 152 | 1.8668 | 35.6261 | 48.8805 | | 2.1528 | 4.5 | 171 | 1.7791 | 38.9771 | 52.1137 | | 2.1528 | 5.0 | 190 | 1.7014 | 42.1517 | 55.5969 | | 1.8067 | 5.5 | 209 | 1.5955 | 44.4444 | 58.4357 | | 1.8067 | 6.0 | 228 | 1.5192 | 48.3245 | 61.1827 | | 1.8067 | 6.5 | 247 | 1.4530 | 50.7937 | 63.7891 | | 1.5663 | 7.0 | 266 | 1.4101 | 52.3810 | 65.5927 | | 1.5663 | 7.5 | 285 | 1.3799 | 53.0864 | 65.9441 | | 1.3777 | 8.0 | 304 | 1.3490 | 54.1446 | 67.0120 | | 1.3777 | 8.5 | 323 | 1.3281 | 55.0265 | 68.0820 | | 1.3777 | 9.0 | 342 | 1.3247 | 55.0265 | 68.0493 | | 1.3092 | 9.5 | 361 | 1.3147 | 55.3792 | 68.6187 | | 1.3092 | 10.0 | 380 | 1.3123 | 55.7319 | 68.7642 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.2.0 - Tokenizers 0.13.2