--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: fine-tuned-DatasetQAS-TYDI-QA-ID-with-indobert-large-p2-with-ITTL-without-freeze-LR-1e-05 results: [] --- # fine-tuned-DatasetQAS-TYDI-QA-ID-with-indobert-large-p2-with-ITTL-without-freeze-LR-1e-05 This model is a fine-tuned version of [indobenchmark/indobert-large-p2](https://huggingface.co/indobenchmark/indobert-large-p2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1732 - Exact Match: 60.2113 - F1: 73.6360 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match | F1 | |:-------------:|:-----:|:----:|:---------------:|:-----------:|:-------:| | 6.3258 | 0.5 | 19 | 3.5172 | 10.7394 | 21.8207 | | 6.3258 | 0.99 | 38 | 2.7869 | 18.3099 | 28.8508 | | 3.5421 | 1.5 | 57 | 2.3403 | 23.4155 | 35.8166 | | 3.5421 | 1.99 | 76 | 2.0205 | 30.2817 | 42.8646 | | 3.5421 | 2.5 | 95 | 1.7202 | 38.7324 | 51.9337 | | 2.0678 | 2.99 | 114 | 1.4839 | 44.5423 | 59.5131 | | 2.0678 | 3.5 | 133 | 1.3583 | 50.5282 | 64.3127 | | 1.4302 | 3.99 | 152 | 1.2706 | 52.2887 | 66.7363 | | 1.4302 | 4.5 | 171 | 1.2389 | 55.1056 | 69.3028 | | 1.4302 | 4.99 | 190 | 1.2065 | 55.8099 | 69.9972 | | 1.0965 | 5.5 | 209 | 1.1840 | 56.8662 | 70.7353 | | 1.0965 | 5.99 | 228 | 1.1887 | 58.4507 | 71.9049 | | 1.0965 | 6.5 | 247 | 1.1797 | 58.6268 | 72.5495 | | 0.9291 | 6.99 | 266 | 1.1685 | 59.6831 | 73.0495 | | 0.9291 | 7.5 | 285 | 1.1713 | 59.1549 | 73.1298 | | 0.839 | 7.99 | 304 | 1.1721 | 60.0352 | 73.0300 | | 0.839 | 8.5 | 323 | 1.1735 | 60.0352 | 73.5065 | | 0.839 | 8.99 | 342 | 1.1725 | 60.2113 | 73.6033 | | 0.7854 | 9.5 | 361 | 1.1738 | 60.2113 | 73.6432 | | 0.7854 | 9.99 | 380 | 1.1732 | 60.2113 | 73.6360 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.2.0 - Tokenizers 0.13.2