muhammadravi251001
commited on
Commit
•
0754ca8
1
Parent(s):
4c6e91e
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-sa-4.0
|
3 |
+
base_model: klue/bert-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- f1
|
9 |
+
model-index:
|
10 |
+
- name: fine-tuned-KoreanIndoNLI-KorNLI-with-bert-base
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# fine-tuned-KoreanIndoNLI-KorNLI-with-bert-base
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.4897
|
22 |
+
- Accuracy: 0.8032
|
23 |
+
- F1: 0.8034
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 1e-05
|
43 |
+
- train_batch_size: 16
|
44 |
+
- eval_batch_size: 16
|
45 |
+
- seed: 42
|
46 |
+
- gradient_accumulation_steps: 8
|
47 |
+
- total_train_batch_size: 128
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 10
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
|
56 |
+
| 0.5126 | 0.5 | 3654 | 0.5759 | 0.7522 | 0.7552 |
|
57 |
+
| 0.4707 | 1.0 | 7308 | 0.5278 | 0.7828 | 0.7845 |
|
58 |
+
| 0.4301 | 1.5 | 10962 | 0.4908 | 0.8006 | 0.8010 |
|
59 |
+
| 0.4223 | 2.0 | 14616 | 0.4839 | 0.8051 | 0.8059 |
|
60 |
+
| 0.3922 | 2.5 | 18270 | 0.4916 | 0.8038 | 0.8051 |
|
61 |
+
| 0.3923 | 3.0 | 21924 | 0.4832 | 0.8051 | 0.8052 |
|
62 |
+
| 0.339 | 3.5 | 25578 | 0.4897 | 0.8032 | 0.8034 |
|
63 |
+
|
64 |
+
|
65 |
+
### Framework versions
|
66 |
+
|
67 |
+
- Transformers 4.31.0
|
68 |
+
- Pytorch 1.13.1
|
69 |
+
- Datasets 2.14.4
|
70 |
+
- Tokenizers 0.13.3
|