--- license: mit base_model: roberta-large tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: fine-tuned-NLI-mnli_original-with-roberta-large results: [] --- # fine-tuned-NLI-mnli_original-with-roberta-large This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3381 - Accuracy: 0.9053 - F1: 0.9056 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:-----:|:---------------:|:--------:|:------:| | 0.3302 | 0.4997 | 1533 | 0.2972 | 0.8940 | 0.8934 | | 0.3139 | 0.9993 | 3066 | 0.2751 | 0.9027 | 0.9030 | | 0.242 | 1.4990 | 4599 | 0.2866 | 0.9030 | 0.9030 | | 0.2627 | 1.9987 | 6132 | 0.2921 | 0.9065 | 0.9066 | | 0.1818 | 2.4984 | 7665 | 0.3049 | 0.9035 | 0.9038 | | 0.1932 | 2.9980 | 9198 | 0.3153 | 0.9039 | 0.9038 | | 0.1457 | 3.4977 | 10731 | 0.3381 | 0.9053 | 0.9056 | ### Framework versions - Transformers 4.42.3 - Pytorch 1.13.1+cu117 - Datasets 2.2.0 - Tokenizers 0.19.1