--- license: apache-2.0 tags: - generated_from_trainer datasets: - cuad model-index: - name: tiny-bert-finetuned-cuad results: [] --- # tiny-bert-finetuned-cuad This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the portion of cuad dataset. It achieves the following results on the evaluation set: - Loss: 0.4606 # Note The model was not trained on the whole dataset but, the first 10% of `train` + the first 10% of `test`. ```bash raw_datasets_train, raw_datasets_test = load_dataset("cuad", split=['train[:10%]', 'test[:10%]']) datasets = DatasetDict({'train': raw_datasets_train, 'validation': raw_datasets_test}) ``` ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1024 - eval_batch_size: 1024 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 136 | 2.9644 | | No log | 2.0 | 272 | 1.9337 | | No log | 3.0 | 408 | 1.4375 | | 2.7124 | 4.0 | 544 | 1.0978 | | 2.7124 | 5.0 | 680 | 0.8571 | | 2.7124 | 6.0 | 816 | 0.6907 | | 2.7124 | 7.0 | 952 | 0.5799 | | 0.9512 | 8.0 | 1088 | 0.5105 | | 0.9512 | 9.0 | 1224 | 0.4726 | | 0.9512 | 10.0 | 1360 | 0.4606 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1