--- license: apache-2.0 tags: - generated_from_trainer datasets: - finer-139 - nlpaueb/finer-139 metrics: - precision - recall - f1 - accuracy base_model: google/bert_uncased_L-2_H-128_A-2 model-index: - name: bertiny-finetuned-finer results: - task: type: token-classification name: Token Classification dataset: name: finer-139 type: finer-139 args: finer-139 metrics: - type: precision value: 0.5339285714285714 name: Precision - type: recall value: 0.036011080332409975 name: Recall - type: f1 value: 0.06747151077513258 name: F1 - type: accuracy value: 0.9847166143263048 name: Accuracy --- # bertiny-finetuned-finer This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the finer-139 dataset. It achieves the following results on the evaluation set: - Loss: 0.0882 - Precision: 0.5339 - Recall: 0.0360 - F1: 0.0675 - Accuracy: 0.9847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0871 | 1.0 | 11255 | 0.0952 | 0.0 | 0.0 | 0.0 | 0.9843 | | 0.0864 | 2.0 | 22510 | 0.0895 | 0.7640 | 0.0082 | 0.0162 | 0.9844 | | 0.0929 | 3.0 | 33765 | 0.0882 | 0.5339 | 0.0360 | 0.0675 | 0.9847 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1