muhtasham commited on
Commit
95a9aaa
1 Parent(s): 97b8794

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +106 -0
README.md ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - wikiann
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: tajroberto-ner
13
+ results:
14
+ - task:
15
+ name: Token Classification
16
+ type: token-classification
17
+ dataset:
18
+ name: wikiann
19
+ type: wikiann
20
+ config: tg
21
+ split: train+test
22
+ args: tg
23
+ metrics:
24
+ - name: Precision
25
+ type: precision
26
+ value: 0.3155080213903743
27
+ - name: Recall
28
+ type: recall
29
+ value: 0.5673076923076923
30
+ - name: F1
31
+ type: f1
32
+ value: 0.4054982817869416
33
+ - name: Accuracy
34
+ type: accuracy
35
+ value: 0.83597621407334
36
+ ---
37
+
38
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
39
+ should probably proofread and complete it, then remove this comment. -->
40
+
41
+ # tajroberto-ner
42
+
43
+ This model is a fine-tuned version of [muhtasham/RoBERTa-tg](https://huggingface.co/muhtasham/RoBERTa-tg) on the wikiann dataset.
44
+ It achieves the following results on the evaluation set:
45
+ - Loss: 0.9408
46
+ - Precision: 0.3155
47
+ - Recall: 0.5673
48
+ - F1: 0.4055
49
+ - Accuracy: 0.8360
50
+
51
+ ## Model description
52
+
53
+ More information needed
54
+
55
+ ## Intended uses & limitations
56
+
57
+ More information needed
58
+
59
+ ## Training and evaluation data
60
+
61
+ More information needed
62
+
63
+ ## Training procedure
64
+
65
+ ### Training hyperparameters
66
+
67
+ The following hyperparameters were used during training:
68
+ - learning_rate: 2e-05
69
+ - train_batch_size: 8
70
+ - eval_batch_size: 8
71
+ - seed: 42
72
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
73
+ - lr_scheduler_type: linear
74
+ - num_epochs: 200
75
+
76
+ ### Training results
77
+
78
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
79
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
80
+ | No log | 2.0 | 50 | 0.7710 | 0.0532 | 0.1827 | 0.0824 | 0.6933 |
81
+ | No log | 4.0 | 100 | 0.5901 | 0.0847 | 0.25 | 0.1265 | 0.7825 |
82
+ | No log | 6.0 | 150 | 0.5226 | 0.2087 | 0.4615 | 0.2874 | 0.8186 |
83
+ | No log | 8.0 | 200 | 0.5041 | 0.2585 | 0.5096 | 0.3430 | 0.8449 |
84
+ | No log | 10.0 | 250 | 0.5592 | 0.2819 | 0.5096 | 0.3630 | 0.8499 |
85
+ | No log | 12.0 | 300 | 0.5725 | 0.3032 | 0.5481 | 0.3904 | 0.8558 |
86
+ | No log | 14.0 | 350 | 0.6433 | 0.3122 | 0.5673 | 0.4027 | 0.8508 |
87
+ | No log | 16.0 | 400 | 0.6744 | 0.3543 | 0.5962 | 0.4444 | 0.8553 |
88
+ | No log | 18.0 | 450 | 0.7617 | 0.3353 | 0.5577 | 0.4188 | 0.8335 |
89
+ | 0.2508 | 20.0 | 500 | 0.7608 | 0.3262 | 0.5865 | 0.4192 | 0.8419 |
90
+ | 0.2508 | 22.0 | 550 | 0.8483 | 0.3224 | 0.5673 | 0.4111 | 0.8494 |
91
+ | 0.2508 | 24.0 | 600 | 0.8370 | 0.3275 | 0.5385 | 0.4073 | 0.8439 |
92
+ | 0.2508 | 26.0 | 650 | 0.8652 | 0.3410 | 0.5673 | 0.4260 | 0.8394 |
93
+ | 0.2508 | 28.0 | 700 | 0.9441 | 0.3409 | 0.5769 | 0.4286 | 0.8216 |
94
+ | 0.2508 | 30.0 | 750 | 0.9228 | 0.3333 | 0.5577 | 0.4173 | 0.8439 |
95
+ | 0.2508 | 32.0 | 800 | 0.9175 | 0.3430 | 0.5673 | 0.4275 | 0.8355 |
96
+ | 0.2508 | 34.0 | 850 | 0.9603 | 0.3073 | 0.5288 | 0.3887 | 0.8340 |
97
+ | 0.2508 | 36.0 | 900 | 0.9417 | 0.3240 | 0.5577 | 0.4099 | 0.8370 |
98
+ | 0.2508 | 38.0 | 950 | 0.9408 | 0.3155 | 0.5673 | 0.4055 | 0.8360 |
99
+
100
+
101
+ ### Framework versions
102
+
103
+ - Transformers 4.21.2
104
+ - Pytorch 1.12.1+cu113
105
+ - Datasets 2.4.0
106
+ - Tokenizers 0.12.1