update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- wikiann
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: tajroberto-ner
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Token Classification
|
16 |
+
type: token-classification
|
17 |
+
dataset:
|
18 |
+
name: wikiann
|
19 |
+
type: wikiann
|
20 |
+
config: tg
|
21 |
+
split: train+test
|
22 |
+
args: tg
|
23 |
+
metrics:
|
24 |
+
- name: Precision
|
25 |
+
type: precision
|
26 |
+
value: 0.3155080213903743
|
27 |
+
- name: Recall
|
28 |
+
type: recall
|
29 |
+
value: 0.5673076923076923
|
30 |
+
- name: F1
|
31 |
+
type: f1
|
32 |
+
value: 0.4054982817869416
|
33 |
+
- name: Accuracy
|
34 |
+
type: accuracy
|
35 |
+
value: 0.83597621407334
|
36 |
+
---
|
37 |
+
|
38 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
39 |
+
should probably proofread and complete it, then remove this comment. -->
|
40 |
+
|
41 |
+
# tajroberto-ner
|
42 |
+
|
43 |
+
This model is a fine-tuned version of [muhtasham/RoBERTa-tg](https://huggingface.co/muhtasham/RoBERTa-tg) on the wikiann dataset.
|
44 |
+
It achieves the following results on the evaluation set:
|
45 |
+
- Loss: 0.9408
|
46 |
+
- Precision: 0.3155
|
47 |
+
- Recall: 0.5673
|
48 |
+
- F1: 0.4055
|
49 |
+
- Accuracy: 0.8360
|
50 |
+
|
51 |
+
## Model description
|
52 |
+
|
53 |
+
More information needed
|
54 |
+
|
55 |
+
## Intended uses & limitations
|
56 |
+
|
57 |
+
More information needed
|
58 |
+
|
59 |
+
## Training and evaluation data
|
60 |
+
|
61 |
+
More information needed
|
62 |
+
|
63 |
+
## Training procedure
|
64 |
+
|
65 |
+
### Training hyperparameters
|
66 |
+
|
67 |
+
The following hyperparameters were used during training:
|
68 |
+
- learning_rate: 2e-05
|
69 |
+
- train_batch_size: 8
|
70 |
+
- eval_batch_size: 8
|
71 |
+
- seed: 42
|
72 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
73 |
+
- lr_scheduler_type: linear
|
74 |
+
- num_epochs: 200
|
75 |
+
|
76 |
+
### Training results
|
77 |
+
|
78 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
79 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
80 |
+
| No log | 2.0 | 50 | 0.7710 | 0.0532 | 0.1827 | 0.0824 | 0.6933 |
|
81 |
+
| No log | 4.0 | 100 | 0.5901 | 0.0847 | 0.25 | 0.1265 | 0.7825 |
|
82 |
+
| No log | 6.0 | 150 | 0.5226 | 0.2087 | 0.4615 | 0.2874 | 0.8186 |
|
83 |
+
| No log | 8.0 | 200 | 0.5041 | 0.2585 | 0.5096 | 0.3430 | 0.8449 |
|
84 |
+
| No log | 10.0 | 250 | 0.5592 | 0.2819 | 0.5096 | 0.3630 | 0.8499 |
|
85 |
+
| No log | 12.0 | 300 | 0.5725 | 0.3032 | 0.5481 | 0.3904 | 0.8558 |
|
86 |
+
| No log | 14.0 | 350 | 0.6433 | 0.3122 | 0.5673 | 0.4027 | 0.8508 |
|
87 |
+
| No log | 16.0 | 400 | 0.6744 | 0.3543 | 0.5962 | 0.4444 | 0.8553 |
|
88 |
+
| No log | 18.0 | 450 | 0.7617 | 0.3353 | 0.5577 | 0.4188 | 0.8335 |
|
89 |
+
| 0.2508 | 20.0 | 500 | 0.7608 | 0.3262 | 0.5865 | 0.4192 | 0.8419 |
|
90 |
+
| 0.2508 | 22.0 | 550 | 0.8483 | 0.3224 | 0.5673 | 0.4111 | 0.8494 |
|
91 |
+
| 0.2508 | 24.0 | 600 | 0.8370 | 0.3275 | 0.5385 | 0.4073 | 0.8439 |
|
92 |
+
| 0.2508 | 26.0 | 650 | 0.8652 | 0.3410 | 0.5673 | 0.4260 | 0.8394 |
|
93 |
+
| 0.2508 | 28.0 | 700 | 0.9441 | 0.3409 | 0.5769 | 0.4286 | 0.8216 |
|
94 |
+
| 0.2508 | 30.0 | 750 | 0.9228 | 0.3333 | 0.5577 | 0.4173 | 0.8439 |
|
95 |
+
| 0.2508 | 32.0 | 800 | 0.9175 | 0.3430 | 0.5673 | 0.4275 | 0.8355 |
|
96 |
+
| 0.2508 | 34.0 | 850 | 0.9603 | 0.3073 | 0.5288 | 0.3887 | 0.8340 |
|
97 |
+
| 0.2508 | 36.0 | 900 | 0.9417 | 0.3240 | 0.5577 | 0.4099 | 0.8370 |
|
98 |
+
| 0.2508 | 38.0 | 950 | 0.9408 | 0.3155 | 0.5673 | 0.4055 | 0.8360 |
|
99 |
+
|
100 |
+
|
101 |
+
### Framework versions
|
102 |
+
|
103 |
+
- Transformers 4.21.2
|
104 |
+
- Pytorch 1.12.1+cu113
|
105 |
+
- Datasets 2.4.0
|
106 |
+
- Tokenizers 0.12.1
|