File size: 2,801 Bytes
18ac71c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: helsinki-opus-de-en-fine-tuned-wmt16-finetuned-src-to-trg
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# helsinki-opus-de-en-fine-tuned-wmt16-finetuned-src-to-trg
This model is a fine-tuned version of [mariav/helsinki-opus-de-en-fine-tuned-wmt16](https://huggingface.co/mariav/helsinki-opus-de-en-fine-tuned-wmt16) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9684
- Rouge1: 63.4933
- Rouge2: 31.4582
- Rougel: 60.1644
- Rougelsum: 60.1675
- Gen Len: 23.6657
- Bleu-1: 63.2918
- Bleu-2: 44.1514
- Bleu-3: 31.6161
- Bleu-4: 23.2357
- Meteor: 0.5330
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 7575
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Bleu-1 | Bleu-2 | Bleu-3 | Bleu-4 | Meteor |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|:-------:|:-------:|:-------:|:-------:|:------:|
| 0.7348 | 1.0 | 1189 | 0.9407 | 61.8229 | 29.2612 | 58.4443 | 58.4242 | 25.6717 | 60.1910 | 40.8083 | 28.4530 | 20.4451 | 0.5069 |
| 0.7794 | 2.0 | 2378 | 0.8899 | 62.6968 | 30.8608 | 59.6691 | 59.7023 | 22.2829 | 60.8908 | 42.4421 | 30.4327 | 22.2917 | 0.5153 |
| 0.6464 | 3.0 | 3567 | 0.8960 | 63.399 | 31.2227 | 60.0505 | 60.0958 | 24.0847 | 62.5712 | 43.4595 | 30.9384 | 22.7195 | 0.5269 |
| 0.5419 | 4.0 | 4756 | 0.9126 | 63.4944 | 30.9818 | 60.1074 | 60.095 | 22.9259 | 61.9100 | 42.9890 | 30.6511 | 22.4916 | 0.5242 |
| 0.4666 | 5.0 | 5945 | 0.9249 | 63.9576 | 31.6972 | 60.6369 | 60.6662 | 23.708 | 63.1527 | 44.3529 | 32.3818 | 24.4188 | 0.5339 |
| 0.4009 | 6.0 | 7134 | 0.9534 | 63.6549 | 32.2835 | 60.3324 | 60.344 | 23.4327 | 63.0061 | 44.5392 | 32.1776 | 23.9321 | 0.5342 |
| 0.3523 | 7.0 | 8323 | 0.9684 | 63.4933 | 31.4582 | 60.1644 | 60.1675 | 23.6657 | 63.2918 | 44.1514 | 31.6161 | 23.2357 | 0.5330 |
### Framework versions
- Transformers 4.30.1
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3
|