File size: 4,676 Bytes
f13d144
 
 
 
 
 
 
14e1f3b
 
4056d41
14e1f3b
373d5f7
14e1f3b
 
 
fa6de38
 
 
 
 
 
14e1f3b
853cf78
14e1f3b
bda8552
ac38a4f
14e1f3b
 
 
 
 
 
 
 
 
853cf78
 
 
 
 
 
 
 
 
 
 
 
 
ca0bd50
853cf78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e52c10a
14e1f3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
853cf78
e52c10a
14e1f3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e52c10a
14e1f3b
 
 
a82b1e3
14e1f3b
 
 
 
 
 
 
 
fa6de38
14e1f3b
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
language:
- en
tags:
- myshell
- speech-to-speech
---
<!-- might put a [width=2000 * height=xxx] img here, this size best fits git page
<img src="resources\cover.png"> -->
<img src="resources/dreamvoice.png">

# DreamVoice: Text-guided Voice Conversion

--------------------

## Introduction

DreamVoice is an innovative approach to voice conversion (VC) that leverages text-guided generation to create personalized and versatile voice experiences. 
Unlike traditional VC methods, which require a target recording during inference, DreamVoice introduces a more intuitive solution by allowing users to specify desired voice timbres through text prompts.

For more details, please check our interspeech paper: [DreamVoice](https://arxiv.org/abs/2406.16314)

To listen to demos and download dataset, please check dreamvoice's homepage: [Homepage](https://haidog-yaqub.github.io/dreamvoice_demo/)


# Model Usage

To load the models, you need to install packages:

```
pip install -r requirements.txt
```

Then you can use the model with the following code:

- NEW! DreamVoice Plugin for OpenVoice (DreamVG + [Opnevoice](https://github.com/myshell-ai/OpenVoice))

```python
import torch
from dreamvoice import DreamVoice_Plugin
from dreamvoice.openvoice_utils import se_extractor
from openvoice.api import ToneColorConverter

# init dreamvoice
dreamvoice = DreamVoice_Plugin(device='cuda')

# init openvoice
ckpt_converter = 'checkpoints_v2/converter'
openvoice = ToneColorConverter(f'{ckpt_converter}/config.json', device='cuda')
openvoice.load_ckpt(f'{ckpt_converter}/checkpoint.pth')

# generate speaker
prompt = 'cute female girl voice'
target_se = dreamvoice.gen_spk(prompt)
target_se = target_se.unsqueeze(-1)

# content source
source_path = 'examples/test2.wav'
source_se = se_extractor(source_path, openvoice).to(device)

# voice conversion
encode_message = "@MyShell"
openvoice.convert(
    audio_src_path=source_path,
    src_se=source_se,
    tgt_se=target_se,
    output_path='output.wav',
    message=encode_message)
```

- DreamVoice Plugin for DiffVC (Diffusion-based VC Model)

```python
from dreamvoice import DreamVoice

# Initialize DreamVoice in plugin mode with CUDA device
dreamvoice = DreamVoice(mode='plugin', device='cuda')
# Description of the target voice
prompt = 'young female voice, sounds young and cute'
# Provide the path to the content audio and generate the converted audio
gen_audio, sr = dreamvoice.genvc('examples/test1.wav', prompt)
# Save the converted audio
dreamvoice.save_audio('gen1.wav', gen_audio, sr)

# Save the speaker embedding if you like the generated voice
dreamvoice.save_spk_embed('voice_stash1.pt')
# Load the saved speaker embedding
dreamvoice.load_spk_embed('voice_stash1.pt')
# Use the saved speaker embedding for another audio sample
gen_audio2, sr = dreamvoice.simplevc('examples/test2.wav', use_spk_cache=True)
dreamvoice.save_audio('gen2.wav', gen_audio2, sr)
```

- End-to-end DreamVoice VC Model

```python
from dreamvoice import DreamVoice

# Initialize DreamVoice in end-to-end mode with CUDA device
dreamvoice = DreamVoice(mode='end2end', device='cuda')
# Provide the path to the content audio and generate the converted audio
gen_end2end, sr = dreamvoice.genvc('examples/test1.wav', prompt)
# Save the converted audio
dreamvoice.save_audio('gen_end2end.wav', gen_end2end, sr)

# Note: End-to-end mode does not support saving speaker embeddings
# To use a voice generated in end-to-end mode, switch back to plugin mode
# and extract the speaker embedding from the generated audio
# Switch back to plugin mode
dreamvoice = DreamVoice(mode='plugin', device='cuda')
# Load the speaker audio from the previously generated file
gen_end2end2, sr = dreamvoice.simplevc('examples/test2.wav', speaker_audio='gen_end2end.wav')
# Save the new converted audio
dreamvoice.save_audio('gen_end2end2.wav', gen_end2end2, sr)
```

- DiffVC (Diffusion-based VC Model)

```python
from dreamvoice import DreamVoice

# Plugin mode can be used for traditional one-shot voice conversion
dreamvoice = DreamVoice(mode='plugin', device='cuda')
# Generate audio using traditional one-shot voice conversion
gen_tradition, sr = dreamvoice.simplevc('examples/test1.wav', speaker_audio='examples/speaker.wav')
# Save the converted audio
dreamvoice.save_audio('gen_tradition.wav', gen_tradition, sr)
```

## Reference

If you find the code useful for your research, please consider citing:

```bibtex
@article{hai2024dreamvoice,
  title={DreamVoice: Text-Guided Voice Conversion},
  author={Hai, Jiarui and Thakkar, Karan and Wang, Helin and Qin, Zengyi and Elhilali, Mounya},
  journal={arXiv preprint arXiv:2406.16314},
  year={2024}
}
```