--- tags: - merge - mergekit - lazymergekit - WizardLM/WizardMath-7B-V1.1 - meta-math/MetaMath-Mistral-7B base_model: - WizardLM/WizardMath-7B-V1.1 - meta-math/MetaMath-Mistral-7B --- # MistralMath-7B-v0.1 MistralMath-7B-v0.1 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [WizardLM/WizardMath-7B-V1.1](https://huggingface.co/WizardLM/WizardMath-7B-V1.1) * [meta-math/MetaMath-Mistral-7B](https://huggingface.co/meta-math/MetaMath-Mistral-7B) ## 🧩 Configuration ```yaml models: - model: mistralai/Mistral-7B-v0.1 # No parameters necessary for base model - model: WizardLM/WizardMath-7B-V1.1 parameters: density: 0.65 weight: 0.4 - model: meta-math/MetaMath-Mistral-7B parameters: density: 0.6 weight: 0.3 merge_method: dare_ties base_model: mistralai/Mistral-7B-v0.1 parameters: int8_mask: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "nachoaristimuno/MistralMath-7B-v0.1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```